- Liczniki Czerenkowa
- Układy detektorów
- Przykłady wielkich współczesnych detektorów
- Wybrane eksperymenty ostatnich lat

Liczniki Czerenkowa

Promieniowanie Czerenkowa

Wysokoenergetyczna naładowana cząstka poruszająca się w ośrodku dielektrycznym z prędkością większą niż prędkość światła w tym ośrodku emituje fotony.

 $\beta c > c / n$

- βc prędkość cząstki
- c / n prędkość światła w ośrodku
- współczynnik załamania ośrodka n

Emitowane światło tworzy spójne czoło fali rozchodzące się pod pewnym kątem do toru cząstki (elektromagnetyczna fala uderzeniowa).

$$\cos\theta = \frac{\operatorname{ct}/n}{\beta\operatorname{ct}} = \frac{1}{\beta\operatorname{n}}, \quad \beta > \frac{1}{n}$$

pomiar kata $\theta \rightarrow$ pomiar prędkości cząstki

- promieniowanie Czerenkowa ma widmo ciagłe
- liczba fotonów o określonej długości fali wyemitowana na jednostkę długości drogi cząstki ~ $d\lambda / \lambda^2$ (dominuje światło niebieskie)
- sygnał od promieniowania Czerenkowa b. słaby straty energii są typowo rzędu 1% strat energii na jonizację

Liczniki Czerenkowa służą do identyfikacji cząstek.

Pomiar prędkości przy znanym pędzie cząstki (wyznaczonym z zakrzywienia toru cząstki w polu magnetycznym) pozwala na określenie masy, a tym samym typu cząstki.

 $\beta = p / E, E^2 = p^2 + m^2 (c = 1)$

Progowe liczniki Czerenkowa

Sygnał jeżeli β powyżej wartości progowej β_{thr} = 1 / n Stosowane już w latach 60-tych w eksperymentach na stacjonarnej tarczy Pomiar całkowitego sygnału fotonowego

• Różniczkowe liczniki Czerenkowa

Pomiar kąta emisji promieniowania Czerenkowa, optyczne ogniskowanie promieniowania, użycie fotopowielaczy

Rozróżnienie naładowanych pionów, kaonów i protonów o energiach do kilkuset GeV

Stosowane też do analizy składu wiązek wtórnych z akceleratorów

• <u>Detektory typu RICH</u> (Ring Imaging Cherenkov)

Możliwość rejestracji fotonów bez użycia fotopowielaczy (detektory fotonów o dużej powierzchni) Stosowane w eksperymentach przy zderzaczach (rozwój detektorów fotonów i niskoszumowej elektroniki)

Progowe liczniki Czerenkowa

Rozróżnianie m-dzy 2 relatywistycznymi cząstkami o tym samym pędzie i różnych masach.

 $\mathbf{p_1} = \mathbf{p_2}, \ \mathbf{m_1} > \mathbf{m_2} \rightarrow \mathbf{v_1} < \mathbf{v_2} \ (\ \beta_1 < \beta_2 \)$

```
Sygnał w liczniku Czerenkowa jeżeli \beta > \beta_{thr} = 1 / n
```

Wybieramy radiator tak, aby cząstka 2 o pędzie powyżej pewnej wartości progowej p_{thr} odp. β_{thr} dawała w nim sygnał od promieniowania Czerenkowa. Cząstka 1 o takim samym pędzie ma już prędkość tuż poniżej progu.

2 - 3 detektory z różnymi progami pozwalają na rozróżnianie m - dzy π^{\pm} , K[±] i protonami w pewnym ograniczonym zakresie pędów

 $\label{eq:main} \begin{array}{ll} \textbf{M}_{\pi} \ \mbox{(140 MeV)} < \textbf{M}_{K} \ \mbox{(490 MeV)} < \textbf{M}_{p} \ \mbox{(980 MeV)} \ \rightarrow \beta_{\pi} \ > \beta_{K} \ > \ \beta_{p} \ , \ \mbox{przy takich samych} pędach \\ pędach \end{array}$

Detektor Czerenkowa RICH

Stożek promieniowania Czerenkowa jest obrazowany w postaci pierścienia w detektorze fotonów o dobrej przestrzennej zdolności rozdzielczej i dużej czułości na pojedyncze fotony.

promień pierścienia → kąt Czerenkowa θ → prędkość cząstki

prędkosć cząstki + pomiar pędu

→ masa cząstki (identyfikacja cząstki)

Separacja pionów, kaonów i protonów w szerokim zakresie pędów

Detektor RICH1 w eksperymencie LHCb

Wodne detektory Czerenkowa

Bardzo duże wodne detektory Czerenkowa są używane do detekcji neutrin (eksp. SuperKamiokande, T2K)

Eksperyment SuperKamiokande

Detektor w starej kopalni pod górą Kamioka w Japonii

- Zbiornik o wysokości 40 m i średnicy 40 m wypełniony 50 000 tonami wody (H₂O)
- Otoczony ok. 11 000 fotopowielaczy
- 1 km pod ziemią

pierwsza wiarygodna ewidencja oscylacji neutrin

$$\nu_{\mu} \leftrightarrow \nu_{\tau}$$

2002 – nagroda Nobla dla M. Koshiby koordynatora eksp. SuperKamiokande

- Oscylacje neutrin (przemiany jednego typu neutrin w inne) wyjaśniają wyniki eksperymentów badających neutrina atmosferyczne i słoneczne
- Oscylacje najłatwiej zrozumieć przy założeniu, że neutrina mają niezerowe masy

Pomiar mionowych i elektronowych neutrin atmosferycznych w eksp. SuperKamiokande w procesach zachodzących poprzez prądy naładowane :

$$u_{\mu}$$
 + N \rightarrow μ +)

$$v_{e} + N \rightarrow e + X$$

 detekcja elektronów i mionów w wodnym liczniku Czerenkowa (50 kton H₂O) (woda stanowi zarówno tarczę jak i detektor oddziaływań neutrinowych)

- produkowane miony i elektrony o odp. dużej energii emitują promieniowanie Czerenkowa wykrywane przez fotopowielacze
 - pomiar rozkładów μ i e \rightarrow informacja o strumieniach mionowych i elektronowych neutrin atmosferycznych
 - metoda pomiaru czuła nakierunek przylotu neutrina

Deficyt neutrin mionowych przechodzących przez Ziemię wyjaśniają oscylacje $\nu_{\mu} \to \nu_{\tau}$

Wodny detektor Czerenkowa

W wodzie (n= 1.33, ⊖_c = 41.2°) dE/dx = 1530 eV/cm dN/dx = 170 fotonów/cm

SuperKamiokande

ν_{μ} + n \rightarrow μ^{-} + p

- μ stożek promieniowania Czerenkowa o ostrych krawędziach
- e rozprasza się ośrodku, zmiana kierunku ruchu, "rozmazany" stożek świetlny
- Promieniowanie Czerenkowa wytwarza obraz w kształcie pierścienia, światło rejestruje się przy pomocy fotopowielaczy
- Rozkład kątowy neutrina jest bliski rozkładowi kątowemu e(μ)
- Przy wysokich energiach rozmycie kątowe ν e(μ) można pominąć

Detektor Forward RICH w eksperymencie DELPHI na zderzaczu e⁺e⁻ (CERN, LEP)

Naładowane leptony μ^{\pm} – oddziałują słabo i elektromagnetycznie

straty energii na jonizację, promieniowanie hamowania?

Promieniowanie hamowania : cząstka o masie m w polu kulombowskim jądra o ładunku Z jest wyhamowana i część jej energii zostaje uwolniona poprzez emisję fotonu

Straty energii na radiację istotne dla cząstek o małej masie

 $m_e = 0.511 \text{ MeV}, m_u = 105.7 \text{ MeV}$

Energia krytyczna dla mionu $E_{k\mu} \sim E_{ke} (m_{\mu}^2 / m_e^2)$

Np. w miedzi (Cu, Z = 29) E_{ke} = 20 MeV,

 $E_{k\mu}(Cu)$ ok. 450 GeV, $E_{k\mu}(Pb)$ ok. 200 GeV

Miony będą generować kaskady elektromagnetyczne dopiero przy wysokich energiach.

Dominującym procesem oddziaływania mionów z materią jest proces jonizacji atomów ośrodka.

Komora mionowa w eksperymencie ATLAS przy LHC

Ø25m

Typowy eksperyment fizyki cząstek wymaga

detekcji, identyfikacji i pomiarów parametrów wielu cząstek, naładowanych i obojętnych, produkowanych w procesach zderzeń

zbudowany jest z wielu typów detektorów

Eksperyment na stacjonarnej tarczy

Układ detektorów w eksperymencie NA48

w CERN badającym niezachowanie CP w rozpadach neutralnych kaonów

Wtórna wiązka neutralnych kaonów ($K_L + K_S$) z akceleratora SPS (Super Proton Synchrotron)

Eksperymenty na wiązkach przeciwbieżnych

Otoczenie obszaru skrzyżowania wiązek detektorami w możliwie pełnym zakresie kąta bryłowego.

Kryteria budowy układu detektorów :

- pomiar wszystkich rodzajów cząstek
- hermetyczność (brak szczelin m-dzy elementami detektora, brak obszarów martwych)
- dobra zdolność rozdzielcza
 - (wysoka precyzja pomiarów)
 - Rozróżnienie poszczególnych cząstek (wysoka granulacja, wiele kanałów)
 - Pomiar energii i śladów cząstek z wysoką precyzją

Ograniczenia : • koszt i dostępne technologie

- rura wiązki i magnesy akceleratora

 (szczególnie blisko miejsca zderzenia)
- chłodzenie, kable zasilające i sygnałowe, mechanika
- odporność detektorów na napromieniowanie

Typowy układ detektorów wokół osi wiązek zderzacza (przekrój poprzeczny)

miejsce oddziaływania → detektory śladowe (w tym detektory wierzchołka)

- → detektory do pomiaru prędkości cząstek → kalorymetr elektromagnetyczny
- → kalorymetr hadronowy → komory mionowe

Detektor eksperymentu ATLAS na zderzaczu protonów LHC w CERN

Metody identyfikacji cząstek bazują na charakterystykach ich oddziaływania z materią :

- <u>straty energii na jonizację dE / dx</u> \rightarrow pomiar prędkości, przy jednoczesnym pomiarze pędu definiuje masę cząstki \rightarrow identyfikacja cząstki (e / µ / π / K / p / D)
- promieniowanie Czerenkowa → pomiar prędkości, przy jednoczesnym pomiarze pędu identyfikuje cząstkę prędkość cząstki można także wyznaczyć z czasu przelotu i promieniowania przejścia (nie omawialismy)
- <u>kształt kaskady w kalorymetrach elektromagnetycznych i hadronowych</u> pozwala odróżnić cząstki elektromagnetyczne (γ, e[±]) od hadronów
- miony oddziaływują tylko poprzez jonizację,

nie oddziaływuja silnie (brak kaskady hadronowej), nie generuja kaskady elektromagnetycznej (do b. wysokich energii)

• neutrina oddziaływują tylko słabo,

identyfikacja ich oddziaływań wymaga dedykowanych eksperymentów przy użyciu detektorów o dużej masie

Cząstka	Metoda detekcji		
π [±] , K [±] , p̄ / p	komory dryfowe / liczniki krzemowe w polu magnetycznym identyfikacja np. w licznikach Czerenkowa		
e±	kalorymetr hadronowy detektory śladowe tak jak dla pionów, kaonów i protonów kalorymetr elektromagnetyczny		
μ±	detektory śladowe tak jak dla pionów, kaonów i protonów b. przenikliwe cząstki, w kalorymetrze elektromagnetycznym kaskadują dopiero przy b. wysokich energiach		
fotony	kalorymetr elektromagnetyczny		
neutralne hadrony n, K_L º	kalorymetr hadronowy		
neutrina	cząstki oddziałujące tylko słabo praktycznie nie oddziałują w detektorach		

Detekcja i identyfikacja cząstek

Eksperyment H1

Przypadek rozpraszania $e^{-} + p \rightarrow e^{-} + X$

Cząstka	Sygnatura		
π [±] , K [±] , p̄ / p	ślad + kaskada hadronowa		
e±	ślad + kaskada elektromagnetyczna		
μ±	ślad w najbardziej zewnętrznych detektorach brak kaskady w kalorymetrze elektromagnetycznym (cząstka w minimum jonizacji)		
fotony	brak sygnałów w detektorach śladowych,kaskada elektromagnetyczna		
neutralne hadrony n, K_L⁰	kaskada hadronowa		
neutrina	brakująca energia w przypadku		
J/ψ, Y,W , Z, H, t	szybki rozpad \rightarrow masa niezmiennicza		

Ważne eksperymenty ostatnich lat

Eksperymenty na zderzaczach e⁺e⁻, ep, pp i pp

eksperyment	akcelerator	energia	status
ALEPH, DELPHI, L3, OPAL	LEP e⁺e⁻ CERN	100 + 100 GeV	zakończone zbieranie danych
H1, ZEUS	HERA e±p DESY	27.5 + 920 GeV	zakończone zbieranie danych
BaBar	PEP II e⁺e⁻ SLAC	3 + 9.1 GeV	zakończone zbieranie danych
BELLE	KEKB e⁺e⁻	3.5 + 8 GeV	zbiera dane
CDF, D0	Tevatron pp Fermilab	1 + 1 TeV	zbiera dane
T2K	J-PARC $\nu_{\mu} \rightarrow \nu_{e}$		startuje
ALICE, ATLAS, CMS, LHCb	LHC pp CERN	3.5 + 3.5 TeV	startuje

Laboratorium CERN (European Organization for Nuclear Research) pod Genewą

Eksperymenty ALEPH, DELPHI, L3, OPAL na wielkim zderzaczu elektronów i pozytonów LEP LEP (Large Electron Positron Collider) 1989 - 2000

- wiązki e⁺e⁻ o maksymalnym pędzie 104.5 GeV / c
- tematyka naukowa
 - badania bozonów pośredniczących Z⁰ i W[±]
 - badania cząstek z cieżkimi kwarkami c i b
 - poszukiwanie nowych cząstek (bozonu Higgsa, cząstek supersymetrycznych)

Krakowskie grupy fizyków, inżynierów i techników uczestniczyły w eksp. DELPHI

1990 Określenie liczby zapachów lekkich neutrin $N_v = 3$

Kołowy zderzacz e + e⁻ LEP w CERN – fabryka bozonów Z⁰

→ precyzyjna weryfikacja przewidywań Modelu Standardowego, opisującego oddziaływania silne i elektrosłabe (teoria oddziaływań silnych - <u>chromodynamika kwantowa</u> + <u>zunifikowana teoria</u> <u>oddziaływań elektromagnetycznych i słabych</u>)

[GeV]

Laboratorium **DESY** (Deutches Elektronen Synchrotron) w Hamburgu

Eksperymenty H1 i ZEUS na jedynym na świecie zderzaczu elektron - proton HERA HERA (Hadron Elektron Ring Anlage) 1992 - 2007

• zderzenia e⁺ / e⁻ o energii 27.5 GeV z protonami o maksymalnej energii 920 GeV

Krakowskie grupy fizyków, inżynierów i techników uczestniczyły w eksp. H1 i ZEUS

- Badania struktury protonu
- Testowanie teorii oddziaływań silnych : chromodynamiki kwantowej
- Poszukiwania nowych cząstek

- SLAC National Accelerator Laboratory w Stanford / USA
 eksperyment BaBar na kołowym zderzaczu elektronów i pozytonów PEP II
- Laboratorium KEK w Tsukubie / Japonia
 eksperyment BELLE na kołowym zderzaczu elektronów i pozytonów KEKB
- Fabryki mezonów B : $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$, ponad milion par $BB^-/dzień$ piękne mezony B składają się z kwarka lekkiego i ciężkiego kwarka b : $B^+ = ub, B^0 = db, B_s = sb$
- Tematyka badawcza : precyzyjne testy Modelu Standardowego (MS) i poszukiwania Nowej Fizyki (wykraczającej poza MS) w tym <u>badania zjawiska łamania parzystości kombinowanej CP w rozpadach B</u> (parzystość przestrzenna P r ↔ - r , sprzężenie ładunkowe C cząstka ↔ antycząstka)

Krakowska grupa fizyków, inżynierów i techników uczestniczy w eksp. BELLE

Nobel 2008 : Makoto Kobayashi i Toshihide Maskawa

" za odkrycie mechanizmu złamanej symetrii, przewidującego istnienie przynajmniej trzech rodzin kwarków w przyrodzie" (50% nagrody)

czyli za wyjaśnienie jak uzyskać łamanie CP w Modelu Standardowym

Wyniki eksperymentów BaBar i Belle, potwierdzające model KM, przyczyniły się do przyznania tej nagrody Nobla.

Obydwa eksperymenty zostały wymienione w komunikacie prasowym Komitetu Noblowskiego.

Fermilab (Fermi National Accelerator Laboratory) Batavia / USA

Eksperymenty CDF i D0 na zderzaczu protonów i antyprotonów Tevatron

- odkrycie kwarka t
- badania cząstek z kwarkiem b
- poszukiwania nowych cząstek, w szczególności bozonu Higgsa

Program badań z wiązkami wtórnymi –

2000 - pierwsza obserwacja neutrina taonowego, $\nu_{\tau},$ stowarzyszonego z ciężkim leptonem τ (\textbf{M}_{τ} ~ 1777 MeV)

• **1995** Odkrycie kwarka t (truth / top, trzecia generacja kwarków, Q = +2/3)

Model Standardowy:

3 rodziny kwarków i leptonów o spinie 1/2

Neutralne leptony – neutrina i antyneutrina :

- oddziałują tylko słabo
- neutrina i antyneutrina jedyne fundamentalne fermiony o masie równej zero
- w Naturze istnieją tylko lewoskrętne neutrina oraz prawoskrętne anyneutrina
- oddzielne zachowanie 3 liczb leptonowych
 L_e, L_u, L_τ

Rodziny leptonowe : naładowany (e,μ,τ) i neutralny lepton (v_e, v_μ, v_τ)

Dane ze zderzacza e⁺e⁻ LEP (pomiar szerokości rezonansu Z⁰) są zgodne z istnieniem tylko 3 zapachów neutrin (ν_e , ν_μ , ν_τ)

Silna ewidencja doświadczalna na oscylacje neutrin :

eksp. ze słonecznymi, atmosferycznymi, reaktorowymi i akceleratorowymi neutrinami

→ przynajmniej 2 typy neutrin mają masę i 3 zapachy leptonowe się mieszają

→ Model Standardowy wymaga modyfikacji

J-PARC (Japan Proton Accelerator Complex), Tokai

Nowy ośrodek akceleratorowy z synchrotronem protonowym ($E_p = 50$ GeV) dostarczający bardzo intensywnych wiązek protonów, a tym samym intensywnych wiązek wtórnych, w tym również neutrinowych

Eksperyment T2K - badania oscylacji neutrin

Akceleratorowy eksperyment z długą bazą pomiarową

Zasada działania:

Poszukiwanie sygnałów oddziaływań neutrin elektronowych w detektorze SuperKamiokande (wodny detektor Czerenkowa) pochodzących z oscylacji pierwotnych neutrin mionowych produkowanych W laboratorium J-PARC.

$$\nu_{\mu} \rightarrow \nu_{e}$$
 ??

Krakowska grupa fizyków, inżynierów i techników uczestniczy w eksp. T2K

Wielki Zderzacz Hadronów LHC (Large Hadron Collider) w CERN

Eksperymenty ALICE, ATLAS, CMS, LHCb

Krakowskie grupy fizyków, inżynierów

i techników uczestniczą w eksperymentach ALICE, ATLAS i LHCb

 poszukiwanie cząstki Higgsa – ostatniej brakującej cegiełki Modelu Standardowego

Skalarna cząstka Higgsa związana z mechanizmem spontanicznego łamania symetrii w zunifikowanej teorii oddziaływań elektrosłabych Modelu Standardowego

- bogaty program fizyki b (łamanie parzystości CP – eksp. LHCb)
- badanie własności plazmy kwarkowo-gluonowej (zderzenia ciężkich jąder – ATLAS, ALICE)
- Poszukiwanie cząstek supersymetrycznych (Nowa Fizyka)

LHC – fabryka supersymetrii ??

Supersymetria – symetria łącząca cząstki

o różnych spinach fermion ↔ bozon

Podsumowanie :

- Główna tematyka badań w fizyce cząstek koncentruje się na :
- sprawdzaniu przewidywań Modelu Standardowego (SM)

w najbliższej przyszłości poszukiwania skalarnego bozonu Higgsa będą bardzo intensywne (Tevatron, LHC)

• poszukiwaniu nowych cząstek wynikających z wyższych symetrii

cząstki supersymetryczne, leptokwarki, ...

- badaniu niezachowania symetrii CP w rozpadach mezonów B i K zderzacze elektron – pozyton
- badaniu / poszukiwaniu plazmy kwarkowo-gluonowej
- badaniu oscylacji neutrin

Wykłady

http://www.ifj.edu.pl/cmstest

Zakładka : wykłady – wybrane teksty \rightarrow 2009/2010

lidia.goerlich@ifj.edu.pl