- fizyka cząstek elementarnych fizyka wysokich energii
- ruch cząstki w polu magnetycznym i elektrycznym
- akceleratory elektrostatyczne
- akcelaratory liniowe
- akcelaratory kołowe (cykliczne):
  - cyklotron
  - synchrotron
- świetlność akceleratora
- zderzacze
- promieniowanie synchrotronowe
- wiązki wtórne
- zderzacze e\*e<sup>-</sup> i proton-(anty)proton
- największe akceleratory
- kierunki rozwoju

Lidia.Goerlich@ifj.edu.pl

Instytut Fizyki Jądrowej PAN

### • Fizyka cząstek elementarnych :

badania fundamentalnych / elementarnych składników materii i ich oddziaływań

## • Metoda doświadczalna :

- zderzenia cząstek o dużej energii, przyspieszanych w akceleratorach,
- badania cząstek promieniowania kosmicznego

Do początku lat 50-tych ubiegłego wieku promienie kosmiczne stanowiły jedyne źródło cząstek wysokich energii, odkryto w nim wiele nowych cząstek niewystępujących w otaczajacej nas materii

Eksperyment fizyki cząstek obejmuje kilka ważnych etapów :

- przyspieszanie cząstek elementarnych / formowanie wiązek cząstek
- detekcja cząstek produkowanych w zderzeniach

 analiza danych doświadczalnych pozwala na pomiar wielu obserwabli (wielkości fizycznie mierzalnych) i ich charakterystyk podstawowe obserwable to : przekroje czynne dla badanych procesów średnie czasy życia dla rozpadów cząstek porównanie wyników doświadczalnych z przewidywaniami teoretycznymi • Fizyka cząstek elementarnych – fizyka wysokich energii

wysokie energie
 zderzających się cząstek
 wysokie energie
 zderzających się cząstek
 → badanie struktury materii na coraz mniejszych odległościach

Procesy rozproszeniowe (np. rozpraszanie elektronów na protonach) są tradycyjną metodą badania struktury materii

cząstkom o dużej energii odpowiadają małe długości fal de Broglie'a  $\lambda = h / p$ długość fali stowarzyszonej z cząstką – sondą (elektronem) mała w porównaniu z promieniem cząstki złożonej (protonem, r<sub>p</sub> ~10<sup>-15</sup> m)

wysoka przestrzenna zdolność rozdzielcza

(h – stała Plancka, p – pęd cząstki , dla cząstki o pędzie (p•c) = 1 GeV,  $\lambda$  ~ 1 fm = 10<sup>-15</sup> m)

Przestrzenna zdolność rozdzielcza Δr cząstki elementarnej rozpraszanej na złożonym obiekcie

 $\hbar$  ≡ h / 2π – zredukowana stała Plancka (ħc = 0.197GeV • fm, c - prędkość światła) q – przekaz (cztero)pędu pomiędzy cząstką – sondą i badanym obiektem

- Akceleratory są urządzeniami służącymi do przyspieszania stabilnych cząstek naładowanych do wysokich energii
- Dotychczas przyspieszane cząstki : elektron, pozyton, proton, antyproton, ciężkie jądra trwałych atomów (najcięższe jony przyspieszane do energii relatywistycznych to jony ołowiu)
- Fizyka akceleratorów bazuje na
  - dynamice cząstek relatywistycznych
  - klasycznej teorii elektromagnetyzmu (równaniach Maxwella)

## Kinematyka relatywistyczna

Energia relatywistyczna

Pęd relatywistyczny

$$E = mc^{2} = m_{0}\gamma c^{2}$$

$$p = mv = m_{0}\gamma\beta c$$

$$\beta = \frac{v}{c} \qquad \gamma = 1 / \sqrt{1 - \frac{v^{2}}{c^{2}}} = 1 / \sqrt{1 - \beta^{2}}$$

Związek m-dzy energią i pędem

$$E^2 = p^2 c^2 + m_0^2 c^4$$

Energia kinetyczna

$$T = E - m_0 c^2 = m_0 c^2 (\gamma - 1)$$

 $m_o$  – masa spoczynkowa cząstki, c – prędkość światła

użyteczne relacje  $\gamma = E / m_0, \beta = p / E; c \equiv 1$ 

- Naturalną jednostką energii w fizyce cząstek jest 1 elektronowolt 1 eV – energia uzyskiwana przez cząstkę o ładunku elementarnym 1 e (ładunek elektronu) przy przejściu różnicy potencjałów 1 V 1 eV = 1.6 · 10 <sup>-19</sup> J
- Skala energii :

 $1 \text{ TeV} = 10^3 \text{ GeV} = 10^6 \text{ MeV} = 10^9 \text{ keV} = 10^{12} \text{ eV}$ 

tera giga mega kilo

• Za jednostkę masy przyjmujemy jednostkę energii (E = mc<sup>2</sup>, c ≡ 1)

 $1 \text{ eV} / \text{c}^2 \equiv 1 \text{ eV} = 1.8 \cdot 10^{-36} \text{ kg}$ 

## Ruch cząstki w polu magnetycznym i elektrycznym

$$\vec{F} = \frac{d\vec{p}}{dt} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

Na cząstkę obdarzoną ładunkiem elektrycznym q poruszającą się w polu elektromagnetycznym działa siła Lorentza F

- E natężenie pola elektrycznego
- B indukcja magnetyczna
- v prędkość cząstki

$$E^{2} = \vec{p}^{2}c^{2} + m_{0}^{2}c^{4}$$
$$\Rightarrow E\frac{dE}{dt} = c^{2}\vec{p}\frac{d\vec{p}}{dt} = qc^{2}\vec{p}\left(\vec{E} + \vec{v}\times\vec{B}\right) = qc^{2}\vec{p}\vec{E}$$

- pole magnetyczne nie zmienia energii cząstki
- energia cząstki ulega zmianie pod wpływem pola elektrycznego
- problem techniczny : jak uzyskać silne pole elektryczne

### Najprostszy akcelerator : układ dwóch elektrod, pomiędzy którymi istnieje stała różnica potencjałów U



źródło stałego wysokiego napięcia

• Problem techniczny : jak uzyskać odpowiednio dużą różnicę potencjałów

#### Akceleratory elektrostatyczne

## z generatorem Cockrofta - Waltona

1932 (700kV) – rozszczepienie jąder Li przy użyciu wiązki protonów o energii 400 keV

Obecnie wytwarzane różnice napięć

~ 10MV

z generatorem Van de Graaffa 1931 (1.5MV) – protony i deuterony przyspieszane do energii 0.6 MeV

#### Obecnie wytwarzane różnice napięć 20-30 MV



obecnie maksymalne energie cząstek do 20 - 30 MeV

zbyt małe energie dla badań fizyki cząstek



Współczesne urządzenie do wstępnego przyspieszania protonów

Generator Van de Graaffa (1931) Zdjęcie z Muzeum Nauki MIT

9

Akceleratory elektrostatyczne : zastosowanie w fizyce jądrowej, w fizyce cząstek używane jako pierwszy stopień przyspieszający

# **Akceleratory liniowe i kołowe**

Uzyskanie wiązek cząstek o większych energiach wymaga :

- zastosowania źródeł zmiennego napięcia o wysokiej częstotliwości
- synchronizacji ruchu paczek/pęczków cząstek ze zmianami napięcia



Elementy przyspieszające z oscylującym polem elektrycznym ustawione są jeden za drugim Cząstki wielokrotnie przebiegają przez przez ten sam obszar z polem elektrycznym oscylującym z częstością radiową

**Pierwsze akceleratory liniowe :** 

**Rolf Wideroe 1927** 

Ernest Lawrence 1931

Pierwszy akcelerator kołowy - cyklotron

Ernest Lawrence 1931 – Nagroda Nobla 1939



- Kolejne elementy rur dryfowych są podłączone do przeciwnych biegunów zmiennego napięcia
- Protony są przyspieszane w obszarze pola elektrycznego m-dzy rurami dryfowymi
- Gdy różnica napięć zmienia znak protony znajdują się wewnątrz rury dryfowej, w obszarze wolnym od pola elektrycznego
- Długości kolejnych rur dryfowych rosną proporcjonalnie do prędkości cząstki, aby zapewnić stały czas przelotu cząstek przez rury ( w procesie przyspieszania prędkość protonów rośnie )

### Idea akceleratora liniowego :

cząstka jest poddana kilkukrotnie działaniu względnie małego napięcia przyspieszającego

Protony doznają działania pola elektrycznego skierowanego wzdłuż kierunku ich lotu



- Konieczna zmiana znaku zasilającego napięcia, aby po wyjściu z rury dryfowej cząstka podlegała działaniu odpowiednio skierowanego pola elektrycznego, powodującego jej przyspieszenie
- Mechanizm samoogniskowania się cząstek ( troche za wolne cząstki trafiaja na obszar pola o większym natężeniu i nadrabiają stratę prędkosci, zbyt szybkie cząstki trafiają na słabsze pole i zwalniają )
- Typowe wartosci pól to kilka MV / m
- Liniowe akceleratory protonów o długościach ~10-70 m dostarczają cząstek o energiach kinetycznych 30-200 MeV
- Stosowane są jako układy wprowadzające dla akceleratorów cyklicznych

Akcelerator liniowy : końcowa energia wiązki zależy od różnicy napięć m-dzy rurami dryfowymi i całkowitej długości układu przyspieszającego

Liniowy akcelerator protonów (LINAC III) w ośrodku DESY / Hamburg

$$E_{total} = 988 MeV$$

$$E_{kin} = E_{total} - m_0 c^2$$

$$E_{kin} = 50 MeV$$

$$E^2 = c^2 p^2 + m_0^2 c^4$$

$$p = 310 MeV / c$$



<u>Cząstki relatywistyczne</u> : E >> m,  $\beta$  = v / c  $\rightarrow$  1

- Przyspieszanie cząstki o prędkości v bliskiej prędkości światła c powoduje nieograniczony wzrost jej energii kinetycznej
- Elektrony o energiach powyżej kilku MeV poruszają się z prędkościami
   b. bliskimi prędkości światła; oprócz krótkiej fazy początkowej przyspieszanie elektronów praktycznie nie zmienia ich prędkości jedynie prowadzi do wzrostu energii cząstek
  - $\rightarrow$  rury dryfowe w elektronowych akceleratorach liniowych mają stałą długość
  - → stała prędkość przesuwania się fali pola przyspieszającego



Liniowy akcelerator protonów w laboratorium Fermilab (USA) przyspiesza protony do energii kinetycznej 116 MeV



- W praktyce do przyspieszania e<sup>±</sup> stosuje się częstości z zakresu mikrofalowego (rzędu 1GHz)
- Rury sa wnękami rezonansowymi zasilanymi przez ciąg klistronów, wewnątrz wnęki wytwarzana jest stojąca fala elektromagnetyczna





Elektrony są unoszone na grzbiecie fali elektromagnetycznej

### **Stanford Linear Accelerator Centre**

największy akcelerator liniowy elektronów o długości 3 km przyspiesza e<sup>±</sup> do energii 50 GeV

zderzacz e<sup>+</sup> e<sup>-</sup> e<sup>-</sup>

działa od połowy lat 60-tych

częstość źródła dużej mocy v = 2.8 GHz,

gradient napięcia na metr długości akceleratora 35 MV / m

> Następna generacja akceleratorów : energie ~ kilkaset GeV



Ruch naładowanej cząstki w stałym polu magnetycznym (B = const, E = 0)

- Siła F działająca na cząstkę jest prostopadła do jej prędkości v i pola magnetycznego B
- Energia cząstki pozostaje stała
- W jednorodnym polu magnetycznym cząstka porusza się po trajektorii spiralnej

Cząstka o masie m i ładunku q, prędkość v prostopadła do pola magnetycznego B :

#### siła Lorentza = siła dośrodkowa

q v B = m v<sup>2</sup> / r q B = p / r

p = 0.3 B r

### pęd p [ GeV / c ], indukcja magnetyczna B [ T ], promień r [ m ]



#### Zdjęcie z komory pęcherzykowej



- Cząstki wielokrotnie przechodzą przez te same wnęki przyspieszające i każdorazowo uzyskują dodatkowa energię
- Pod wpływem pola magnetycznego poruszają się po torach zbliżonych do okręgu
- Ograniczenia : natężenie pola magnetycznego w magnesach zakrzywiających energia tracona na skutek promieniowania synchrotronowego ( e<sup>±</sup> )







Konstrukcja pierwszego cyklotronu stanowiła przełom w technice akceleracji cząstek.

Pierwsze cyklotrony – badania sztucznej promieniotwórczości

## Cyklotron



- Umieszczone w próżni półkoliste wnęki (duanty) znajdują się w jednorodnym polu magnetycznym. Duanty sa połączone ze źródłem zmiennego napięcia o stałej częstości.
- Jony dodatnie wytwarzane wewnątrz urzadzenia są wielokrotnie przyspieszane m-dzy duantami.
- Cząstki zataczają coraz większe tory kołowe prostopadle do kierunku pola (Br = p / q)
- Czas jednego pełnego obiegu

 $T = 2\pi \cdot r / v = 2\pi \cdot m / qB$ 

## Cyklotron

- Dla cząstek nierelatywistycznych (m = const) częstość obiegu po orbicie jest stała częstość cyklotronowa ω = 2π 1 / T = B q / m = const
  - → stała częstość zmian napięcia przyspieszającego cząstki przechodzace przez szczelinę m-dzy duantami doznają zawsze działania przyspieszającego pola elektrycznego

#### • Ograniczenia :

```
duże pędy \rightarrow duże pola magnetyczne (Br = p / q)
relatywistyczny wzrost masy cząstki \rightarrow wzrost okresu T jej obiegu po orbicie,
powodujący że cząstka docierająca do przerwy m-dzy elektrodami nie jest w fazie
z polem elektrycznym
```

**Cyklotron** B= const, stała częstość napięcia przyspieszającego, energie protonów do 30 MeV

## Synchrotron

~1950 Renesans badań w fizyce cząstek elementarnych

Odkrycie w promieniowaniu kosmicznym nowych cząstek elementarnych obdarzonych dziwnością wpłynęło na budowę akceleratorów wysokich energii opartych na zasadzie synchrotronu

1952 Zasada silnego ogniskowania

#### Pierwsze synchrotrony protonowe w USA :

**1952** E<sub>p</sub> = **3 GeV** Cosmotron w Brookhaven w Brookhaven National Laboratory

**1954** E<sub>p</sub> = 6 GeV Bevatron w Lawrence Berkley Laboratory

### Synchrotron :

Rosnące pole magnetyczne utrzymuje cząstki na stałej orbicie

Silne ogniskowanie wiązek cząstek





- Przyspieszane cząstki krążą po stałych orbitach możliwość przyspieszania do naprawdę wysokich energii (aspekty techniczne i finansowe)
- Procesowi przyspieszania towarzyszy zarówno zmiana natężenia pola magnetycznego, jak i częstości przyspieszającego pola elektrycznego
- Zasada silnego ogniskowania wiązka cząstek przechodzi przez układ magnesów, które ją na przemian skupiają i rozpraszają
  - → otrzymujemy wiązkę bardzo małych rozmiarów : wpływ na rozmiary rury próżniowej - przekroje poprzeczne rzędu kilku cm<sup>2</sup>, rozmiary magnesów, redukcja kosztów



Analogia optyczna ilustrująca zasadę silnego ogniskowania

Wiązka optyczna przechodzaca przez układ złożony z soczewek skupiających i rozpraszających podlega ostatecznie skupieniu. Podobnie jest z wiązką cząstek przechodzacych kolejno przez magnesy skupiające i rozpraszające.



- Każdy segmnet składa się z :
- wnęk przyspieszających (A)
- magnesów zakrzywiających (B)
- układów ogniskujących (F)





Magnesy kadrupolowe i wyżej polowe służą do skupiania wiązek w akceleratorach

- Synchrotrony protonowe maksymalna energia ograniczona przez wielkość pola magnetycznego B i promień akceleratora
- Synchrotrony elektronowe straty energii związane z promieniowaniem synchrotronowym

- Oprócz energii ważnym parametrem określającym własności akceleratora
- jest <u>świetlność L.</u>
- Świetlność określa liczbę reakcji zachodzących w jednostce czasu.
- Parametr ten jest szczególnie ważny dla zderzaczy, dla których częstość zderzeń w obszarze przecięcia się wiązek jest mała.

Dla procesu o przekroju czynnym  $\sigma$  świetlność wyraża się wzorem :

 $dN / dt = L \cdot \sigma$ 

 $L [ cm^{-2} \cdot s^{-1} ]$ 

## Im wyższa świetlność akceleratora tym rzadsze procesy możemy zmierzyć

nie poświęcając na zbieranie danych zbyt wiele lat (10 lat – typowa skala czasowa eksperymentów z fizyki cząstek)

Precyzja pomiarów zależy również od statystyki zebranej próbki danych.

Świetlność dla dwóch przeciwbieżnych wiązek relatywistycznych

 $\mathbf{L} = \mathbf{n} \cdot \mathbf{f} \cdot \mathbf{N_1} \cdot \mathbf{N_2} / (\sigma_{\mathbf{x}} \sigma_{\mathbf{y}})$ 

- n liczba krążących pęczków w każdej z wiązek
- N<sub>1</sub>, N<sub>2</sub> liczby cząstek w każdym pęczku wiązki (~10<sup>10</sup>)
  - częstość przecięć wiązek (45 kHz 40 MHz)

 $\sigma_x, \sigma_v - poprzeczne rozmiary wiązek$ 

f

- Licznik wzoru całkowita liczba przyspieszanych cząstek na jednostkę czasu, im wiecej cząstek tym większa świetlność
- Mianownik wzoru stopień skupienia wiązek w miejscu zderzenia , im bardziej skolimowane wiązki tym większa świetlność
- Zwiększanie liczby przyspieszanych cząstek kosztowny sposób zwiekszania L, konieczne jest uzyskanie b. małych rozmiarów poprzecznych wiązek

| zderzacz e⁺e⁻                      | σ <mark>,</mark> ~ 300 μm  | $L \sim 6 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$    |
|------------------------------------|----------------------------|-----------------------------------------------------------|
| LEP                                | σ <sub>y</sub> ~ 8 μm      |                                                           |
| Projekt przyszłego                 | σ <sub>x</sub> ~ 0.5 μm    | L ~ 3 · 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| liniowego zderzacza e⁺e⁻           | σ <sub>y</sub> ~ 5 nm (!!) |                                                           |
| ILC ( $E_{CM} = 500 \text{ GeV}$ ) |                            |                                                           |

Energia układzie środka masy (Centre of Mass Energy, E<sub>CM</sub>)

Układ środka masy 
$$\sumec{p}=0$$

Pojedyncza cząstka o masie spoczynkowej m<sub>o</sub> :  $E_{CM}^2 = P^2 = m_0^2$ , P – czteropęd cząstki

Kwadrat czteropędu P<sup>2</sup> jest niezmiennikiem transformacji Lorentza : P<sub>LAB</sub><sup>2</sup> = P<sub>CM</sub><sup>2</sup>

)

LAB : cząstka A o masie spoczynkowej m<sub>A</sub>, energii  $E_A$  i pędzie p<sub>A</sub> zderza się z cząstką tarczy o masie m<sub>B</sub> ( w układzie LAB  $E_B = m_B$ , p<sub>B</sub> = 0)

$$E_{CM}^2 = P^2 = m_A^2 + m_B^2 + 2 E_A m_B$$

Jeśli cząstka A jest wysoce relatywistyczna E<sub>A</sub> >> m<sub>A</sub>, m<sub>B</sub>

$$E_{\rm CM} = \sqrt{2m_{\rm B}E_{\rm A}}$$

Dla akceleratora z tarczą stacjonarną E<sub>CM</sub>, energia dostępna do produkcji nowych cząstek, rośnie jak pierwiastek z energii cząstek padających



W zderzeniu protonu o energii 450 GeV ze spoczywajacym protonem (m<sub>p</sub> = 0.938 GeV /  $c^2$ )  $E_{CM}$  = 29 GeV.

Tylko mała część energii wiązki jest dostępna dla produkcji nowych cząstek, pozostała energia jest zamieniana na energię kinetyczną cząstek wtórnych. Energia układzie środka masy (Centre of Mass Energy,  $E_{CM}$ )

Zderzenie 2 relatywistycznych cząstek o takiej samej energii poruszajacych się w przeciwnych kierunkach ( układ LAB ≡ układ CM ):

 $\mathsf{E}_{\mathsf{CM}} = \mathbf{2}\mathsf{E}_{\mathsf{A}} = \mathsf{E}_{\mathsf{A}} + \mathsf{E}_{\mathsf{B}}$ 

Zderzenie 2 protonów o energii 450 GeV

Е<sub>см</sub> = 900 GeV



Praktycznie cała energia dostępna dla produkcji nowych cząstek.

Akcelaratory wiązek przeciwbieżnych (zderzacze):

- dwie wiązki cząstek biegnące w przeciwnych kierunkach zderzaja się w pierscieniu w kilku obszarach skrzyżowania wiązek, w których zainstalowano eksperymenty
- Duża energia w układzie CM dostępna dla produkcji nowych cząstek
- Dla zderzaczy e<sup>+</sup>e<sup>-</sup> i proton-antyproton wystarczyłby tylko jeden pierścień, ponieważ cząstki o takiej samej masie i przeciwnych ładunkach mogą być przyspieszane w przeciwnych kierunkach przy użyciu tych samych magnesów.
   Dla zderzaczy pp i e<sup>±</sup> konieczne są dwie rury próżniowe z różnymi magnesami.

 Świetlności zderzaczy są mniejsze niż akceleratorów ze stacjonarną tarczą – "tarcza" jest o wiele mniejsza • naładowana cząstka poruszająca się po orbicie kołowej traci energię na promieniowanie hamowania

energia wypromieniowana przez cząstkę na jedno okrążenie wynosi :

$$\Delta E = \frac{4\pi e^2 \beta^2 \gamma^4}{3R} \quad \beta = v/c \text{ and } \gamma = 1/\sqrt{1-\beta^2} = E/m$$

- Straty radiacyjne rosną z malejącą masą cząstki i rosnącą energią jak czwarta potęga problem przy przyspieszaniu elektronów i pozytonów.
- Zwiększanie promienia akceleratora niewiele daje straty radiacyjne maleją liniowo z R



 $\frac{\Delta E_{\text{electron}}}{\Delta E_{\text{proton}}} = \left(\frac{m_{\text{p}}}{m_{\text{c}}}\right)^4 \simeq 10^{13}$  Porównanie strat radiacyjnych dla relatywistycznych elektronów i protonów o takim samym pędzie

Zderzacz LEP (obwód 27 km) przyspieszający wiązki e<sup>±</sup> - straty radiacyjne na pojedynczą cząstkę przyspieszoną do energii 45 (100) GeV wynosiły 0.084 (2.058) GeV na jeden obieg.

LEP był prawdopodobnie ostatnim akceleratorem kołowym e<sup>+</sup>e<sup>-</sup>. Następny zderzacz e<sup>+</sup>e<sup>-</sup> będzie akceleratorem liniowym.

Badania oddziaływań cząstek nietrwałych lub neutralnych prowadzi się w oparciu o wiązki wtórne, formowane po wyprowadzeniu z akceleratora wiązki protonów



#### Cząstki we wiązkach wtórnych :

## Zderzacze e<sup>+</sup>e<sup>-</sup> i proton-proton



Zderzacze elektron - pozyton

- zderzenia fundamentalnych cząstek
- $\rightarrow$  czysty proces
- energia zderzenia dobrze znana
- niższe energie (LEP, E<sub>CM</sub> ~200 GeV) (promieniowanie synchrotronowe)

**PRECYZYJNE POMIARY** 

Zderzacze proton- (anty)proton



kwark

- zderzenia złożonych cząstek
- zderzenia kwark-(anty) kwark
  - → resztki hadronów "zaciemniają" pomiar i interpretację wyników
- energia układu kwark-(anty)kwark nie jest dobrze znana
- wyższe energie (LHC, E<sub>CM</sub> ~3.5 TeV)

**ODKRYCIA NOWYCH CZĄSTEK** 

W praktyce nie można zbudować akceleratora kołowego przyspieszającego cząstki od "zera" do najwyższych energii. Cząstki muszą być przyspieszane etapami.

Zespół akceleratorów służących do przyspieszania protonów w LHC



## Duże ośrodki naukowe posiadające akceleratory

- CERN na granicy francusko szwajcarskiej pod Genewą :
  - zderzacz elektron pozyton LEP
  - supersynchrotron protonowy SPS
  - wielki zderzacz hadronów LHC
- **DESY** w Hamburgu : zderzacz elektron proton HERA
- Fermilab pod Chicago : zderzacz proton antyproton Tevatron
- SLAC w Stanford (Kalifornia / USA): liniowy zderzacz elektron pozyton SLC
- KEK w pobliżu Tsukuby / Japonia : zderzacz elektron pozyton KEKB

## Największe akceleratory

| nazwa    | cząstki | energie       | lokalizacja               | status                      |  |
|----------|---------|---------------|---------------------------|-----------------------------|--|
| SLC      | e⁺e⁻    | 50 + 50 GeV   | Stanford<br>USA           |                             |  |
| LEP      | e⁺e⁻    | 100 + 100 GeV | CERN<br>Genewa Zakończone |                             |  |
| HERA     | e±p     | 30 + 820 GeV  | DESY<br>Hamburg           | danych                      |  |
| PEP II   | e⁺e⁻    | 9 + 3.1 GeV   | Stanford<br>USA           |                             |  |
| KEKB     | e⁺e⁻    | 8 + 3.5 GeV   | Tsukuba<br>Japonia        | Modernizacja<br>(2010-2014) |  |
| Tevatron | pp      | 1 + 1 TeV     | Fermilab<br>USA           | Zbiera dane                 |  |
| LHC      | рр      | 3.5 + 3.5 TeV | CERN<br>Genewa            | start                       |  |

LHC – planowana energia 7 + 7 TeV

## Kierunki rozwoju akceleratorów

- <u>Coraz większe energie</u> w celu poszukiwania i badania nowych ciężkich cząstek : LHC – docelowo 2\*7 TeV w zderzeniach pp prace nad przyszłym liniowym zderzaczem e+e<sup>-</sup> (E<sub>CM</sub> ok. 500 GeV)
- <u>Coraz wyższe świetlności</u> umożliwiające pomiary bardzo rzadkich procesów np. fabryki B ( SuperKEKB ) i fabryki K
- Pierwszy zderzacz ciężkich jonów w 2000 rozpoczął pracę w laboratorium Brookhaven ( BNL ), planowane są zderzenia ciężkich jonów w LHC
- Prowadzone sa prace nad nowymi typami akceleratorów jak fabryki neutrin, zderzacze mionów czy przyspieszanie radioaktywnych jąder do wysokich energii

## Large Hadron Collider LHC, Europejski Ośrodek Badań Jądrowych, CERN Genewa

Zderzacz proton-proton w tunelu zderzacza e<sup>+</sup>e<sup>-</sup> LEP o długości L = 27 km

Pole magnetyczne w pierścieniu LEP / LHC o indukcji B = 8.4 T

1600 nadprzewodzacych magnesów dipolowych, każdy o wadze 27 ton

### Planowana energia

E<sub>CM</sub> = **7** + **7** = **14** TeV,

obecnie (2010) osiagnięto

3.5 + 3.5 = 7 TeV



## Zderzacz SPS w CERN



## Zderzacz elektronów i protonów HERA w DESY



## Tevatron w ośrodku Fermilab (USA)



## Linowy zderzacz elektron-pozyton SLAC w Stanford / USA



## Akcelerator KEKB w Tsukubie / Japonia

