Identyfikacja cząstek

Określenie masy cząstek

Pomiar prędkości przy znanym pędzie

- e/ μ / π / K/ p
- czas przelotu (TOF)
- straty na jonizację dE/dx
- Promieniowanie Czerenkowa (C)
- Promieniowanie przejścia (TR)

Różnice w charakterze oddziaływań

- e / γ / μ / h
- Przenikalność e/ γ / μ / h
- Rozwój kaskady e/ γ / h

Efekt Czerenkowa

Figure 3.3: A Huygens construction showing how the light emitted by a particle travelling faster than the speed of light in the medium in which it is travelling results in a coherent front at a specific angle θ_c to the particle's trajectory.

Efekt Czerenkowa

Cząstka wysyła promieniowanie jeśli przekracza prędkość światła w danym ośrodku

 $\beta \ge 1/n$ gdzie n – współczynnik załamania światła w ośrodku

Kąt wypromieniowania

 $\cos \Theta = 1/\beta.n$

Wypromieniowana energia na jednostkę długości $dE/dx_c = 2 \pi r_e mc^2 sin^2 \Theta (1/ \lambda_1^2 - 1/ \lambda_2^2)$

Liczba fotonów na jednostkę długości dN/dx = $2 \pi \alpha \sin^2 \Theta (1/\lambda_1 - 1/\lambda_2)$

Kilka liczb

W zakresie 350 - 500 nmdE/dx = 1180 sin² Θ eV/cm dN/dx = 390 sin² Θ fotonów/cm

W wodzie (n= 1.33, ⊕_c = 41.2°) dE/dx = 1530 eV/cm dN/dx = 170 fotonów/cm

Liczniki Czerenkowa

- Progowe
- Różnicowe
- RICH (Ring Imaging Cherenkov)

Liczniki Czerenkowa – różnice między cząstkami

Michał Turała, 2009

Liczniki Czerenkowa – progowy i różnicowy

Progowe liczniki Czerenkowa

przy pewnym pędzie p (β) spełniającym warunek progowy $\beta_p \ge 1/n$

$$\beta_{\pi} > \beta_{K} > \beta_{p}$$

	n ₁ >	n ₂ >	n ₃
π	X	X	X
K	X	X	
р	X		

Progowe liczniki Czerenkowa w eksperymencie NA11

Liczniki Czerenkowa – różnice między cząstkami

Michał Turała, 2009

Liczniki Czerenkowa typu RICH – zasada działania

Fig. 20 - Principle of UV-Ring Imaging Cherenkov Counter (RICH).

Problem: pozycyjne detektory czułe na fotony Czerenkowa

Detektor fotonów o dużej powierzchni

- dobra wydajność rejestracji pojedynczych fotonów
- dobra przestrzenna zdolność określenia pozycji fotonu
- duża czułość, bo mamy do czynienia z pojedynczymi elektronami

Praca w zakresie głębokiego ultrafioletu

- bo więcej fotonów
- łatwiejsza jonizacja

Trudności

 $\begin{array}{ll} & - & \text{przepuszczalność radiatora} & & \epsilon_{R} \left(E \right) \\ & - & \text{przepuszczalność okna} & & \epsilon_{w} \left(E \right) \\ & - & \text{współczynnik odbicia lustra} & & \epsilon_{M} \left(E \right) \\ & - & \text{Wydajność kwantowa detektora} & & \epsilon_{i} \left(E \right) \\ & - & \text{Wydajność rejestracji} & & \epsilon_{R} \end{array}$

N_o = 370 _{E1} $\int^{E_2} ε_R$ (E) $ε_w$ (E) $ε_M$ (E) $ε_i$ (E) $ε_R$ dE przy ΔE ≈ 1 eV, N_o ≈ 80 /cm

Detektor RICH eksperymentu DELPHI

Identyfikacja cząstek w detektorze DELPHI

Identyfikacja cząstek w detektorze DELPHI – detektor Forward RICH

Detektor RICH eksperymentu DELPHI

"Pierścienie" Czerenkowa w detektorze RICH eksperymentu DELPHI

Komora proporcjonalna dla detektora RICH eksperymentu DELPHI

Transmisja i pochłanianie fotonów w komponentach detektora RICH

Pomiar kąta Czerenkowa w detektorze RICH eksperymentu DELPHI

Identyfikacja cząstek w detektorze DELPHI

Identyfikacja cząstek w detektorze DELPHI

Identyfikacja cząstek w detektorze DELPHI

Aerolegowe liczniki Czerenkowa w spektrometrze Belle (KEK)

Detektor Czerenkowa w spektrometrze Belle (KEK)

BELLE PID with Threshold type Cherenkov counters

BELLE ACC Single Module Structure

ACC : K/ π in 1.5<p<3.5 GeV/c ·Barrel : 960 modules in 60 ϕ -segments n = 1.010 ~ 1.028 ·FWD endcap : 228 modules in 5 layers n = 1.030

Michał Turała, 2009

The BABAR Detector

SVT: 97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%, \sigma(z_0) = 65 @ 1 GeV/c$ DIRC: K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c EMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%_{Michal Turala, 2009}$

Detektor RICH w spektrometrze BaBar(SLAC)

Detektor RICH w spektrometrze BaBar(SLAC)

Detektor RICH w spektrometrze BaBar(SLAC)

 $D^{*-} \rightarrow D^0 \pi^-$

RICH w spektrometrze ALICE – detektor rejestracji fotonów

Detektory Czerenkowa RICH w spektrometrze LHCb

Detektory Czerenkowa RICH w spektrometrze LHCb - motywacja

Figure 3.2: The separation between $B_s \to D_s K$ and the larger background $B_s \to D_s \pi$, without (left) and with (right) the PID provided by the RICH detectors.

Michał Turała, 2009

Detektory Czerenkowa RICH w spektrometrze LHCb

Figure 3.4: (Left) The upper half of the RICH1 optics in cross section, showing the flat and spherical mirrors, the aerogel and C_4F_{10} radiators, the quartz windows, the photon detector plane and the trajectory of Cherenkov light for a typical particle. (Right) The right half of the RICH2 optics in cross section, showing its smaller angular acceptance, radiator and mirror positioning.

Detektory Czerenkowa RICH w spektrometrze LHCb

Figure 3.5: The π/K separation power of the three radiators, expressed in terms of the significance (sigma) of the Cherenkov angle difference as a function of particle momentum. The momentum coverage for a 2σ significance is indicated.

Detektory Czerenkowa RICH w spektrometrze LHCb

Figure 3.8: The hits and fitted rings for a typical event in RICH1 and RICH2. The small (large) ring radii in RICH1 originate from the C_4F_{10} (aerogel) radiator. The solid rings indicate tracks passing through the whole detector and the dotted rings indicate other tracks.

Detektory Czerenkowa RICH w spektrometrze LHCb – detektor fotonów

Figure 3.10: (*left*) A conceptual diagram of a reduced MAPMT dynode chain. (right) The corresponding pixel arrangement mapped onto the front of the tube.

RICH w spektrometrze LHCb – detektor rejestracji fotonów

Detektory Czerenkowa RICH w spektrometrze LHCb - detektor fotonów

Figure 3.12: (Top) A schematic diagram showing the components of the HPD and the path of a photon $\rightarrow e^- \rightarrow$ sensor. (Bottom) A photograph of a completed HPD.

Figure 3.13: The response of the HPD sensor assembly to multiple photoelectron hits. The clear distinction between the single photoelectron and the pedestal is shown[58]. This plot is for an early prototype of the HPD where the analogue response was available, in the final tubes the separation between the pedestal and ² the 1 p.e. peak has been increased further to give a signal to noise ratio of order 50.

RICH w spektrometrze LHCb – konstrukcja

Efekt promieniowania przejścia

- Cząstka naładowana przy przejściu przez granicę ośrodków o rożnej stałej dielektrycznej ϵ (µ) emituje promieniowanie
- Wypromieniowana energia

W = 2/3 α ω_p γ ~ γ α - stała struktury subtelnej

- Średnia liczba fotonów na jedną warstwę
 N ~ ½ α
- Kierunek wypromieniowania
 Θ ~ 1/ γ

Detektory

- Radiator z wielu cienkich i "lekkich" (małe Z) warstw
- Detektory: liczniki/ komory proporcjonalne

Pomiar energii (amplitudy sygnałów)

Fig. 50. Transition radiation measured in a scenar/CO₂-filled (50/20) proportional chamber (1.04 thick) behind radiators of different pometries traversed by electrons of momentum p_e [CO 77].

Pomiar przez zliczanie dużych sygnałów - zasada

Fig. 51. Principle of detection of transition radiation by counting ionization clusters along the track. TR: transition radiation, D.V.: drift voltage [LU 81].

Wyniki porównawcze – separacja pionów i elektronów

Detektor TR w spektrometrze ATLAS

Detektor TR w spektrometrze ATLAS

- Pulse height spectrum by ATLAS TRT
 - Detector
 - Straw tubes: 4 mmø, 40-150 cm (L)
 - Gas mixture

$$- Xe/CF_4/CO_2/$$

= 70/20/10

