### Pomiar torów cząstek

### • Cel

- Pomiar wierzchołków oddziaływań
  - pomiar czasów życia
  - preselekcja oddziaływań wybranej klasy
- Badanie topologii przypadków
  - krotności
  - rozkłady kątowe
  - Jety
- Pomiar pędów (ładunku)
  - spektrometry magnetyczne
- Pomoc w identyfikacji cząstek (e, μ, γ)
  - Iiczniki Czerenkowa
  - kalorymetry
  - spektrometry mionów

Pierwotne i wtórne wierzchołki oddziaływań



• Parametr zderzenia b



 $\begin{array}{ll} {\sf L}=\beta.\gamma.{\sf C}.\tau & droga\ cząstki \\ {\sf \tau}-czas\ życia\ cząstki \\ {\sf r}-czas\ życia\ cząstki \\ {\sf P}=\beta.\gamma.{\sf M},\ tg\ \Theta\approx{\sf M}/{\sf P} \\ {\sf przy\ rozpadzie\ na\ lekkie\ cząstki: \\ {\sf b}\approx{\sf C}.\tau & {\sf p}_{{\sf pop}}\approx{\sf M}/2,\ {\sf p}_{{\sf podl}}\approx{\sf P}/2 \\ {\sf b}=(100-500)\ \mu{\sf m} & {\sf dla\ cząstek\ z\ czasem\ życia\ 10^{-12}\ {\sf s}} \\ {\sf c}.\tau_{\sf B}\approx460,\ {\sf c}.\tau_{\sf Do}\approx120,\ {\sf c}.\tau_{\sf Ds}\approx150\ \mu{\sf m} \\ {\sf wymagana\ zdolność\ rozdzielcza} \end{array}$ 

• Dokładność pomiaru parametru zderzenia b



Dla układu dwóch detektorów

 $\sigma_{bi}^{2} = [\sigma_{1} \cdot \mathbf{r}_{2} / (\mathbf{r}_{2} - \mathbf{r}_{1})]^{2} + [\sigma_{2} \cdot \mathbf{r}_{1} / (\mathbf{r}_{2} - \mathbf{r}_{1})]^{2}$ 

 $\mathbf{r_1}, \mathbf{r_2}$  – odległość detektorów od punktu oddz.

 $\sigma_1$ ,  $\sigma_2$  – zdolność rozdzielcza detektorów

 $\sigma_{bi} \approx \sigma_1$ 

dla 
$$\mathbf{r}_2 >> \mathbf{r}_1, \, \sigma_2.\mathbf{r}_1/\mathbf{r}_2 < \sigma_1$$

Michał Turała, 2009

• Dokładność pomiaru parametru zderzenia b



- Dla układu gdy znamy kierunek toru

$$σ_{x\alpha} = r. σ_{\alpha}$$
  
 $σ_{bi}^2 = (σ_x')^2 + (r.σ_{\alpha})^2$ 

Rozpraszanie wielokrotne

$$\sigma_{b}^{2} = \sigma_{bi}^{2} + \sigma_{MS}^{2}$$
$$\sigma_{b} = \sqrt{A^{2} + B^{2}/p^{2}}$$

#### Zasadnicze cechy

- Energia na wyprodukowanie jednej pary elektron-dziura wielokrotnie mniejsza niż potrzebna na uzyskanie jednego jonu w gazie (np. dla Si wynosi 3.6 eV w porównaniu z ok. 35 eV dla Argonu)
- Detektory nie posiadają wzmocnienia "wewnętrznego" i sygnał jest wynikiem bezpośredniej jonizacji (generacji par dziura-elektron) – jego wielkość jest proporcjonalna do ilości materiału na drodze cząstki, co wymaga optymalizacji systemu odczytu

#### Zasada działania

- Materiały półprzewodnikowe
  - pasmo zabronione
  - domieszkowanie
- Detektory
  - Komora jonizacyjna zbyt duży prąd upływu i szum
  - Dioda półprzewodnikowa

Własności materiałów półprzewodnikowych

|                           | German | Krzem | GaAs                   | Diament                 |
|---------------------------|--------|-------|------------------------|-------------------------|
| Pasmo zabr.               | 0.66   | 1.12  | 1.43                   | 5.47 eV                 |
| Oporność                  |        | 2.3   | <b>10</b> <sup>3</sup> | 10⁵ Ω.cm                |
| Stała diel.               |        | 11.9  | 12.5                   | 5.7                     |
| Mobilność e               | 1500   | 8500  | 2200 cm²/Vs            |                         |
| Mobilność h               | 600    | 400   | 1600 cm²/Vs            |                         |
| En. dla e-h               | 2.8    | 3.6   | 4.2                    | 13 eV                   |
| Nr e-h/0.1 mm             |        | 8900  | 13000                  | 3600                    |
| Nr e-h/0.1 X <sub>o</sub> |        | 8400  | 3000                   | 4500                    |
| Współcz. rozsz.           |        | 2.5   | 5.9                    | 0.8 10 <sup>-6</sup> /K |
| Przew. term.              | 1.4    | 0.46  | 20 W/cmK               |                         |

- Półprzewodnikowa komora jonizacyjna
- Oporność "czystego" (domieszkowanie na poziomie 10<sup>15</sup>-10<sup>16</sup>) krzemu wynosi ok. 5000 Ω.cm
- Oporność detektora o powierzchni 1 cm<sup>2</sup> i grubości 0.3mm wynosi ok. 150  $\Omega$
- Prąd przy napięciu 10 V wyniósłby ok. 0,1 A!
- Jeśli wzmacniacz ma "czas czułości"  $\Delta t$  = 10<sup>-6</sup>s to liczba elektronów w tym czasie N<sub>e</sub> = 10<sup>12</sup> e<sup>-</sup>
- Fluktuacje tego ładunku, czyli szum N =  $\sqrt{N_e} \approx 10^6 e^{-1}$
- Sygnał z 0.3 mm Si wynosi S ≈ 25 .10<sup>3</sup> e<sup>-</sup> (ok. 4 fC)
   Stosunek Sygnał/Szum S/N ≈ 2.10<sup>-2</sup> !! (szum wielokrotnie większy niż sygnał !)

• Złącze p-n



Dioda półprzewodnikowa



Dioda półprzewodnikowa



- Diodę można otrzymać
  - Spontanicznie, metodą dyfuzji, metodą implantacji
- Głębokość zubożenia w
  - $W^2 = \varepsilon.U/2.\pi.N_h.e$
  - dla paska Si
    - w = 5.3.10<sup>-5</sup> (ρ.U)<sup>1/2</sup> cm

gdzie  $\rho$  = oporność Si w  $\Omega$ cm

Technologia produkcji detektorów paskowych



#### Detektory paskowe



Bardzo wysoka dokładność litografii (< 1 μm)</li>

Michał Turała, 2009

Krzemowe detektory mozaikowe (CCD – charge coupled devices)



Michał Turała, 2009

• Krzemowe detektory mozaikowe ("pixels")



#### Modelowanie komputerowe pól i sygnałów



#### Zniszczenia pod wpływem promieniowania – prąd upływu



#### Zmiany pod wpływem promieniowania – napięcie zubożenia



Michał Turała, 2009

#### Technologie przyszłościowe – detektory diamentowe

### Diamond Production:

 Diamonds used in HEP are mainly Chemical Vapor Deposition (CVD) diamonds
 CVD diamonds are grown on a hot substrate (1000-1400 K) immersed in C,H gas





### Diamond Wafers:

Growth rate: 0.1-10 µm/hr
Diameter: up to 12 cm
Thickness: >1mm

#### Technologie przyszłościowe – detektory diamentowe

### Charge Collection Distance:

- Fraction of charge that is collected
  - $Q = \frac{d}{t} Q_0$ , t=thickness
  - $d=(\mu_e \tau_e + \mu_h \tau_h)E=collection dist.$
- Corresponds to average distance an e-h pair moves apart





Charge Collection Distance (CCD) is main parameter for quality of polycrystalline diamonds

Observed to saturate at fields of  $1V/\mu m$  for poly-crystal diamond

### Technologie przyszłościowe – detektory diamentowe

MIP Signals for high quality (ccd=240 µm) pCVD diamonds:



#### Technologie przyszłościowe – detektory pikselowe CMOS



The key element of this technology is the use of an n-well/p-epi diode to collect, through thermal diffusion, the charge generated by the impinging particle in the thin epitaxial layer (typically 5-15 µm, mostly undepleted) underneath the read-out electronics.

Technologie przyszłościowe – szybkie detektory 3 D



### Detektory torów i wierzchołków

#### Wymagania dla przyszłych detektorów przy ILC – DEPFET, MAPS

Dla rejestracji rozpadów Higgsa na cząstki z ciężkimi kwarkami c i b wymagana jest b. dobra zdolność identyfikacji wierzchołków rozpadu



$$\sigma_{IP} = a \oplus \frac{b}{p \sin^{3/2} \theta}$$



Michał Turała, 2009

### Detektory torów i wierzchołków

#### Wymagania dla przyszłych detektorów ILC – jak najcieńsze

