

A Large Ion Collider Experiment – dedykowany eksperyment ciężkojonowy na LHC

Cel – poszukiwanie nowego stanu materii – plazmy kwarkowo-gluonowej

LHC – Large Hadron Collider

	SPS	RHIC	LHC
E _{cm} [GeV]	17	200	5500
dN _{ch} /dy	500	700	3000-8000
ε [GeV/fm ³]	≈2.5	≈3.5	≈15-40
τ _{QGP} [fm/c]	<]	≈1	≈4.5-12

Fizyka w ALICE

• Historia fizyki w ALICE

(pierwszy okres)

- Pierwsze pomysły (Aachen, 1990)
- Prezentacja zainteresowania (Evian, 1992)
- List intencyjny (1993) i dodatek (1995)
- Projekt techniczny (1995) i dodatki (1996, 1999)
- Technical Design Reports (1998-2004)
- Physics Performance Report (2003 2005)

- Ciężkie jony w LHC
 - ALICE początkowo 'soft physics experiment'
 - Główne wyzwanie rekonstrukcja torów
 - $(2000 < dN/\eta < 8000)$
 - Identyfikacja cząstek

- Fizyka na poziomie EoI and LoI
 - Tracking (widma)
 - PID
 - Interferometria bozonowa (HBT)
 - Pary leptonowe (ρ , ω , ϕ , J/ ψ)
 - Bezpośrednie fotony
 - Globalne charakterystyki przypadków

W stronę twardej fizyki

- Silna zachęta ze strony LHCC fizyka obszaru Y
 - Początkowo zostawiona dla eksperymentów pp (CMS)
 - Ale
 - Wysokie obcięcie na P_t w obszarze centralnym
 - Absorber mionowy daleko od punktu oddziaływania duże tło
 - Niejasna sytuacja z rekonstrukcją mionów przed absorberem
 - wpływ na zdolność rozdzielczą w masie

 Resultat → Forward Muon Spectrometer (pierwszy pomysł eksperymentu asymetrycznego – grupa krakowska)

- Detekcja otwartego charmu ('95)
 - Aktualny detektor wierzchołka niewystarczający
 - Próba umieszczenia dodatkowej warstwy w rurze próżniowej
 - bliżej
 - nie ma materiału "przed"
 - technicznie bardzo skomplikowane
 - Przeprojektowanie detektora wierzchołka
 - dodatkowa warstwa detektora pikselowego
 - tak blisko wiązki jak się tylko da (38mm)
 - Rura próżniowa tak cienka jak się tylko da

- Detekcja elektronów & trigger ('98)
 - Identyfikacja elektronów oparta na pomiarze dE/dx w TPC
 - Zdolność rozdzielcza dE/dx pogorszyła się z zaawansowaniem symulacji
 - Brak możliwości wyzwalania, może J/ψ ale nie Y
 - Propozycja dołączenia Detektora Promieniowania Przejścia (TRD)
- Fizyka jetów (wyniki z RHIC-a)

– Duży Kalorymetr Elektromagnetyczny?

ALICE dzisiaj

- ITS (krzem) identyfikacja rozpadów, charm
- **PHOS** spektrometr fotonowy
- TPC głowny detektor śladowy, identyfikacja h+/-
- RHICH (Czerenkow) identyfikacja h+/-
- TOF (czas przelotu) identyfikacja h^{+/-}
- TRD (promieniowanie przejścia) identyfikacja e+/-
- μ -ARM identyfikacja par $\mu^{+/-}$
- PMD krotności fotonów
- Detektory "ku przodowi" (FMD, START, V0, ZDC)

ITS – Inner Tracking System

Wielowarstwowy detektor krzemowy:

- 2 warstwy pikseli
- 2 warstwy detektora dryfowego
- 2 warstwy detektora paskowego
 Razem 6.7 m² krzemu

Pełnowymiarowy model ITS

Detektory pikselowe

parametr	piksel	dryf	pasek		
rozmiar	50x425	150x300	95x40000		
komórki µm²					
σ _{rφ} μm	12	38	20		
σ _z μm	100	28	830		
σ _{rφ} 2-track μm	100	200	300		
σ_z^2 2-track μm	850	600	2400		

TPC Time Projection Chamber

Sygnał na fragmencie rzędu padów

Schemat TPC

159 rzędów padów, 570k kanałów elektroniki

Wydajność rekonstrukcji śladów w TPC

 $\sigma_{dE/dx} \approx 7\%$

TRD + Transition Radiation Detector

Dwa gotowe moduły TRD

Zasada działania

Dyskryminacja π - e

HMPID (RICH)

Ring Image Cherenkov

RICH na wiązce SPS (NA35)

Testy – STAR@RHIC

Liczniki Czasu Przelotu - TOF

Wymagania - szybki sygnał, dobre gaszenie lawiny

Prosty licznik RPC

Kalorymetr Fotonowy - PHOS

PbWO₄

Moduł testowy

Diody PIN

Spektrometr Mionowy

Komory śladowe (10 w pięciu stacjach)

Akceptacja ALICE

η

Identyfikacja cząstek w ALICE

 π/K

K/p

TPC + ITS

ALICE używa prawie wszystkich znanych metod

Szybkie wyznaczanie wierzchołka

ITS – korelacja informacji z 2 warstw pikseli (bez znajdowania śladów)

 $σ_x = 15 µm$ $σ_y = 15 µm$ $σ_z = 5 µm$

niezależne od B

Tracking – TPC+ITS+TRD

Δp/p (%)	< <u>P</u>	² T>	$P_T > 5 \text{ GeV/c}$				
B (T)	0.2	0.5	0.2	0.5			
TPC	2.4	1.2	8.5	5.8			
TPC+ITS	1.6	0.7	3.4	1.4			

Identyfikacja cząstek w ALICE

Observable hadronowe

	position resolution	mass resolution	momentum resolution	efficiency
K^0	200-300 μm	6-8 MeV	1.5-1.8%	0.21-0.25
Λ	500 µm	3-4 MeV	1.3%	0.15

Charm i beauty

• $D0 \rightarrow pK i D+ \rightarrow ppK$

podstawowy problem - zdolność rozdzielcza parametru zderzenia

π TPC ITS K

pp

kanał ee

ALICE i EMCAL

Fizyka pp w ALICE

Wszystkie obserwable HI muszą być mierzone w pp

Poza tym pp jest interesujące samo w sobie

- rozkłady krotności
- korelacje
- przypadki dyfrakcyjne
- jets

= ...

Przewaga ALICE:

- niższe obcięcieP_t
- identyfikacja

Nasz detektor - TPC

Zasada działania – połączenie komór: dryfowej i proporcjonalnej

- segmentacja płaszczyzny padów wyznaczenie współrzędnej w kierunku prostopadłym do kierunku dryfu
- odczyt taktowany w czasie wyznaczenie współrzędnej w kierunku dryfu

Co my tam zrobiliśmy/robimy?

Symulacje komputerowe:

- Opcje konstrukcyjne:
 - geometria detektora
 - wybór gazu roboczego
 - geometria komór odczytu
- Właściwości detektora:
 - zdolności rozdzielcze (rφ, z, dE/dx)
 - możliwości rekonstrukcyjne (wydajność rekonstrukcji, σp_t/p_{t...})

Rozwój oprogramowania detektora i eksperymentu

- Algorytmy rekonstrukcyjne
- Kalibracja i alignment

Analiza danych

Testy prototypu (2004-2006)

Promieniowanie kosmiczne i na wiązce PS

Obrazy śladów cząstek w płaszczyźnie prostopadłej do dryfu

Ekstrapolacja do 250 cm: $\sigma_{r\phi} \cong 800 \ \mu m, \sigma_z \cong 900 \ \mu m$

Wyniki testów

Kalibracja komór odczytu

Pomysł polega na wykorzystaniu znanego widma energetycznego i porównaniu go sektor po sektorze lub w większej granulacji. W ALICE używa się izoptopu ⁸³Kr

a) - Monte-Carlob) - Dane

Wzmocnienie elektroniki sektor po sektorze – strona C

dE/dx w TPC, skalibrowany odczyt

zdolność rozdzielcza w P_{t} , dane nieskalibrowane

promienie kosmiczne widziane w ALICE

ALICEw dniu D

Tylko detektory odporne na "splash"

Trigger – SPD in coincidence with bunches

On:

- 6 layers of ITS
- VO (scintilator)
- calorimeters
 - Zero Degree Calo Photon Spectrometer EM Calorimeter
- Off: all others

Dzień D: 23 List. 2009

Pierwsza fizyka w ALICE

284 events taken during the LHC commissionning

Ratios of INEL, SD and DD taken from UA5.

Data corrected for:

- trigger efficiency
- detector efficiency
- reconstruction efficiency
- secondary tracks

η

volume 65 · numbers 1–2 · January · 2010

 $\frac{dN_{ch}}{d\eta}(INEL) = 3.10 \pm 0.13(stat) \pm 0.22(syst)$

Stabilna wiązka – wszystkie detektory

Identyfikacja cząstek

Rekonstrukcja torów cząstek

Particle ZOO 1

Particle ZOO 2

Smak przyszłosci

Więcej energii...

LHC 2010

	Jan	e-co with	ommis n safe k	sioning beam			Feb				Mar			
Wk	1		2	3	4	5	6	7	8	9	10	11	12	13
Мо	28		4		11 18	25	1	8	15	22	1	8	15	22
Tu														
We			ł											
Th														
Fr	1				MPSCON	IMISSION								
Sa					BEAMCON	MISSION	IING				3	.5 TeV	1	
Su					PILOT	PHYSICS					<u>ر</u>			

Start non-LHC physics program

		Apr May					June						
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	29	Easter	12	19	26	3	10	17	Whit.	31	۲	14	21
Tu				8		8	8	3					
We				8	8		Ascension	3					
Th				8			§ .	8					
Fr	G. Friday			8	1 May		8	8					
Sa			2.5				§	3	8	8			
Su		<u> </u>	3.5	Tev			8]				4-5 16	

		lon Beam to SPS											
		July				Aug \ Sep							
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	28	5	12	19	26	2	3	16	23	30	6	13	20
Tu		8							8				8
We		8		li i			8		8	8	8	8	8
Th	3	8		8	8		8		8		Jeune G	B	8
Fr		8			8				8				8
Sa		8			8				8				8
Su	8	8		8	8		4-5 I	ev	8	B		8	8

