CPV w rozpadach

ASYMETRIE CP ZALEŻNE OD CZASU (tCPV)

💓 w rozpadach B w Modelu Standardowym

Dobierając odpowiednio stany końcowe, możemy wyznaczyć poszczególne kąty TU, lub ich kombinacje:

przejście kwarkowe	przykładowe rozpady	mierzony kąt	typ asymetrii
$b \rightarrow c \overline{c} s$	$\overline{\rm B}{}^{0}({\rm B}{}^{0}) ightarrow { m J}/\psi { m K}_{ m S}$	$\phi_{M} + \phi_{D} = \phi_{1}$	a _{CP} (t)
$b \rightarrow s \overline{s} s$	$\overline{B}{}^{0}(B^{0}) \rightarrow \phi K_{S}$	$\phi_{M} + \phi_{D} = \phi_{1}$	a _{CP} (t)
$b \rightarrow u \overline{u} d$	$\overline{B}{}^{_{0}}(B{}^{_{0}}) o \ \pi^{_{+}} \pi^{_{-}}$	$\phi_{M} + \phi_{D} = \phi_{2}$	a _{CP} (t)
$b \rightarrow c \ u s \oplus b \rightarrow u$	$\overline{c} s \qquad B \rightarrow D_{CP} K$	$\phi_{D2} - \phi_{D1} = \phi_3$	a _{CP} DIR
$2\phi_M = arg(V_{tb}^*V_{td}/V_{tb}V_{td}^*)$ - faza oscylacji $B^0 \leftrightarrow \overline{B}^0$, $\phi_D - faza amplitudy rozpadu$			

Nie wszystkie kanały rozpadu nadają się w równym stopniu do wyznaczania kątów trójkąta unitarnego. Decydują o tym niepewności teoretyczne i względy eksperymentalne. Najczystszym kanałem tak teoretycznie, jak i doświdczalnie, jest tzw. "złoty rozpad": $\overline{B}^0(B^0) \rightarrow J/\psi K_s$

1987: Ikaros Bigi, Ichiro Sanda $N(B^0 \rightarrow J/\psi K^0)/N(B^0) \sim 10^{-4}$, czysty sygnał, czysta interpretacja teoretyczna

Przypadek rozpadu $B{\rightarrow}J/\psi K_L$ zarejestrowany w detektorze Belle

Rekonstrukcja rozpadów $B \rightarrow J/\psi K_S$

$B^0 \rightarrow J/\psi K^0 : 535 \times 10^6 \text{ par } \overline{B}B$

POMIAR $A_{CP}(t)$ w $B^0 \rightarrow J/\psi K^0$

pomiar t

KRZEMOWY DETEKTOR WIERZCHOŁKA

Wkład grupy z IFJ-PAN

Elektronika odczytu do SVD1 (moduł HALNY-1998), SVD2 (2003), SVD2.5 (obecnie)

Kalibracje (pozycjonowanie), monitorowanie,...

Weryfikacja mechanizmu K-M

SM po 10 latach pracy fabryk B

- ✓ Pełna weryfikacja mechanizmu K-M
- \checkmark Precyzyjny pomiar kąta φ_1
- ✓ Pierwsze ograniczenia na kąty ϕ_2 i ϕ_3
- ✓ Dokładniejsze pomiary boków UT ($\tau_{B,}$ |V_{ub}|, |V_{td}|)
- ✓ Obserwacja wielu nowych kanałów rozpadów

Pierwsze, niewielkie odchylenia od MS Potrzebna znacznie większa dokładność

Poszukiwanie nowej fizyki w rozpadach B

Historia fizyki:

 $\Box \ \Gamma(\mathsf{K}_{\mathsf{L}} \rightarrow \mu^{+} \mu^{-}) / \Gamma(\mathsf{K}^{+} \rightarrow \mu^{+} \nu_{\mu}) \Rightarrow \text{czwarty kwark c};$

 \Box częstość oscylacji K⁰ \Rightarrow m_c;

□ łamanie CP w rozpadach $K^0 \Rightarrow 3$ rodziny kwarków;

 \Box częstość oscylacji B⁰ \Rightarrow m_t \approx 170 GeV;

pomiary w rozpadach B komplementarne wobec bezpośrednich poszukiwań na LHC;

pomiary masy kwarku t w CDF i D0

sprzężenia kwarku t mierzymy w fabrykach B, ^{np.:} $V_{td} = |V_{td}| e^{-i\beta} \phi_1 = (21.5 \pm 1.0)^\circ$

Efekty nowej fizyki w rozpadach $B \Rightarrow$ odchylenia od przewidywań modelu standardowego.

Potrzebne czułe obserwable, z małymi niepewnościami teoretycznymi, np. asymetrie CP, polaryzacje...

From A. Buras, Flavour Theory @ HEP-EPS 2009, Krakow July 22

Gdzie szukać efektów nowej fizyki

przejście b→s(d) w modelu standardwym: diagram pętlowy kwarkiem t i bozonem W

Jeżeli nowa fizyka przy skali O(1)TeV \Rightarrow obserwowalne efekty w rozpadach B już przy obecnej czułości eksperymentów

w teoriach supersymetrycznych:

nowe fazy – nowe źródła łamania CP

Jeżeli nowe cząstki dostępne na LHC, to w rozpadach B oczekujemy efektów ≥ 0.1 .

Najważniejsze pomiary

- Trójkąt unitarności z dokładnością O(1%): amplitudy drzewiaste ($|V_{cb}|, |V_{ub}|, \gamma$) i z pętlami ($|V_{td}|, \beta$)
- Pomiary inkluzywne (czystsze teoretycznie): $b \rightarrow u, b \rightarrow s\gamma, b \rightarrow d\gamma, b \rightarrow sl^+l^- \dots$
- Nowe źródła łamania CP: precyzyjne pomiary w procesach $b \rightarrow s$;
- Oddziaływania przez prądy prawoskrętne: CPV w B→K*γ;
- Naładowany bozon Higgsa: poszukiwania w rozpadach $B \rightarrow \tau v_{\tau} i B \rightarrow D^{(*)} \tau v_{\tau};$
- Oddziaływania skalarne:
 B_s→µ⁺µ⁻

Komplementarne pomiary w (Super-)LHCb i SuperBelle

Podstawowe narzędzia w fabrykach B

□ półleptonowe rozpady B w fabrykach B

$$B \rightarrow h l v_l$$
 $l = e, \mu$ $X_h = D, D^*, D^{**}, \pi, \rho, \omega...$

$$E_{vis} \equiv E_{X_h} + E_l \qquad \vec{p}_{vis} \equiv \vec{p}_{X_h} + \vec{p}_l$$

$$E_{v} = |\vec{p}_{v}| = E_{B} - E_{vis}$$

$$D^{-}, \pi, \rho, \omega...$$

$$P^{+}, \pi, \rho, \omega...$$

$$P^{+$$

e.

for channel with single neutrino

Podstawowe narzędzia w fabrykach B

reconstrukcja jednego z mezonów B (B_{tag}) w czystm kanale rozpadu

Wszytskie pozostałe cząstki pochodzą z drugiego B (B_{sig}) $p_{sig} = (E_{beam}, -\vec{p}_{tag})$

- \Rightarrow badamy rozpady B_{sig}:
- inkluzywne,
- z nieznaną masą brakującą (np.. Z kilkoma neutrinami),
- z duzym tłem...

n.p.
$$B_{tag} \rightarrow hadrony$$

 $B_{sig} \rightarrow h \ l \ v, h = \pi, \rho, \omega \dots$

(Pół)taonowe rozpady B

• poszukiwania naładowanego bozonu Higgsa w rozpadach $B \rightarrow \tau v_{\tau}$ i $B \rightarrow D^{(*)} \tau v_{\tau}$;

$B \rightarrow \tau v_{\tau}$

anihilacja z wymianą W

Amplituda rozpadu $\propto m_b m_{\tau} \tan^2 \beta$

czułe obserwable, np. polaryzacja τ

Nowa fizyka w amplitudach drzewiastych

2-3 neutrina w stanie końcowym

50

0 0

0.2

0.4

0.8 1 (GeV)

0.6

Belle+BaBar: $BF(\tau v_{\tau})_{exp} = [1.73 \pm 0.35] \times 10^{-4}$ -0.083 CKMFitter: $BF(\tau v_{\tau})_{fit} = [0.786^{+0.179}] \times 10^{-4}$ $BF(\tau v)$ nie używane w dopasowaniu odchylenie 2.5σ

Przyszłe fabryki b

Formacja $\Upsilon(4S)$ w zderzeniach e⁺e⁻ Zderzenia hadronów wysokich energii $hh \rightarrow bb + X$ $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \overline{B}B$ $\overline{b}/b \Rightarrow B^0 / \overline{B}^0, B^{\pm}, B_s, B_c, \Lambda_b, \dots$ $e^+e^- \rightarrow \Upsilon(5S) \rightarrow \overline{B}^{(*)}B^{(*)}, \ \overline{B}_sB_s$ $L_{\text{peak}} \cong 2 \times 10^{35} / \text{cm}^2 / \text{s}^3$ LHC →2×10⁹ BB/rok 10^{5} ÷ 10^{6} b/s; σ (b)/ σ _{inel}~ 0.006 \rightarrow 2×10⁹ τ ⁺ τ ⁻/rok SuperKEKB (przebudowa KEKB) ATLAS uniwersalne spektrometry; **Belle-II** fizyka b w pierwszej fazie LHC CMS $(L~10^{33}/cm^{2}/s)$ docelowa świetlność ~8×10³⁵/cm²/s 50 ab⁻¹ LHCb – specjalny detektor dla fizyki b Początek ~2015 optymalizacja dla L=2×10³²/cm²/s L_{peak} >10³⁶/cm²/s INFN

Frascati

W kierunku SuperKEKB

Fabryki B w dobie LHC ?

Fabryki B są niezastąpionym narzędziem do badania:

> rzadkich rozpadów B, o trudnych doświadczalnie sygnaturach (np. z cząstkami neutralnymi w stanie końcowym: rozpady radiacyjne, rozpady z mezonami π^0 ,np.B⁰ → $\pi^0 \pi^0$)

>**rozpadów z neutrinami w stanie końcowym** (w rozpadzie $B \rightarrow D \tau^- v_{\tau}$ występują dwa v, jedno z rozpadu B, drugie z rozpadu τ). Znajomość energii B pomaga w ich rekonstrukcji.

rozpadów inkluzywnych (ważnych z punktu widzenia rachunków teoretycznych).

> procesów z dużym tłem (o niższym tle w fabrykach B decydują: lepszy stosunek przekrojów czynnych σ_{BB}/σ_{tot} , niższe krotności przypadków, pełniejsza informacja o produkowanych mezonach B). Zmniejsza to błędy systematyczne, ważne przy precyzyjnych pomiarach.

Prace prowadzone w Krakowie

Tematy obecnie prowadzonych prac magisterskich i doktorskich

Badanie rozpadów B z przejściem b \rightarrow s

np. $B^0 \rightarrow \phi K^*$

Poszukiwanie rozpadów B z przejściem b \rightarrow c τ · \overline{v}_{τ} np. B \rightarrow D^(*) τ · \overline{v}_{τ} Poszukiwanie nowych stanów (c s) w rozpadach B np. B \rightarrow D^(*) D^(*) K B \rightarrow D_sK⁻ π ⁻ Badanie rozpadów B z barionami w stanie końcowym

np. $B \rightarrow D^{(*)} \overline{p} n$

Inne prace

prace aparaturowe przy odczycie detektora wierzchołka