Fizyka zderzeń relatywistycznych ciężkich jonów

- Wykład 0: LHC okno na Mikroświat
- Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty
- Wykład 2: Plazma kwarkowo-gluonowa
- Wykład 3: Geometria zderzenia, stan początkowy-gęstość energii, produkcja entropii
- Wykład 4: Ewolucja systemu efekty kolektywne
- Wykład 5: Procesy z dużym przekazem pędu
- Wykład 6: Model saturacji. Kolorowy Kondensat Szklany.
- Wykład 7: Eksperyment PHOBOS przy akceleratorze RHIC
- Wykład 8: Fizyka ciężkich jonów w eksperymencie ATLAS (LHC)

Plan

- Wprowadzenie, definicje
- Wyniki doświadczalne (głównie z eksperymentów przy akceleratorze RHIC)
 - Efekty stanu początkowego, czy końcowego?
 - Zależność od rodzaju cząstki
 - Zależność od rapidity
 - Zależność od energii
- Podsumowanie

Gęstość cząstek w funkcji p_t

 $d^2 N /(dp_T dy)$

Niezmiennicze przekroje czynne

Przekroje czynne niezmiennicze względem transformacji Lorentza:

$$\sigma^{\text{inv}} = E \frac{d^3 \sigma}{dp^3} = \frac{E}{p_T} \frac{d^3 \sigma}{d\phi dp_T dp_L} = \frac{1}{p_T} \frac{d^3 \sigma}{d\phi dp_T dy}$$
Niezmiennicze gęstości cząstek (particle yields)

$$E \frac{d^3 N}{dp^3} = \frac{E}{p_T} \frac{d^3 N}{d\phi dp_T dp_L} = \frac{1}{p_T} \frac{d^3 N}{d\phi dp_T dy}$$
Po wycałkowaniu po kącie ϕ :

$$E \frac{d^3 N}{dp^3} = \frac{2\pi}{p_T} \frac{d^2 N}{dp_T dp_L}$$

Inne definicje

Wykład 5

Procesy z dużym przekazem pędu

$p_T \ge 2 \ GeV/c$ (umownie)

- Twarde rozproszenia (hard scattering processes)
- Zderzenia 'punktowe' o skali długości $1/p_T \le 0.1$ fm
- Występują wcześnie
 - ⇒ czułe na własności materii we wczesnej fazie ewolucji systemu
- Przekroje czynne mogą być 'teoretycznie' obliczone
 perturbacyjna Chromodynamika Kwantowa (pQCD), lub QCD z klasycznymi polami

Badanie:

Szukanie modyfikacji produkcji cząstek o dużych p_T w AA, w stosunku do prostszych układów zderzenia, pp i pA (dA)

Produkcja cząstek o dużych p_T w zderzeniach p+p

p+p: twarde rozproszenia w 'próżni' QCD

PDF - Funkcje rozkładu partonów (q i g) Parton Distribution Functions (dane z procesów głęboko-nieelastycznych - DIS) f(x,Q²)

Przekrój czynny na twarde rozproszenie (pQCD) $\sigma(ab \rightarrow cd)$

FF - funkcje fragmentacji $Fragmentation Function (dane z e^+e^-)$ D_{h/c} (z_c, Q_c²) $<math display="block">\frac{d\sigma_{pp}^{h}}{dyd^{2}p_{T}} = K \sum_{abcd} \int dx_{a} dx_{b} f_{a}(x_{a}, Q^{2}) f_{b}(x_{b}, Q^{2}) \frac{d\sigma}{d\hat{t}} (ab \rightarrow cd) \frac{D_{h/c}^{0}}{\pi z_{c}}$

Produkcja cząstek o dużych p_T w zderzeniach A+A

A+A: twarde rozproszenia w 'gorącym/gęstym' ośrodku QCD

PDF-Funkcje rozkładu partonów Efekt Cronina Cieniowanie, efekt EMC Saturacja gluonów (CGC)?

Przekrój czynny na twarde rozproszenie

FF – funkcje fragmentacji Straty energii partonów (QGP?) Wtórne rozproszenia hadronów Efekty stanu końcowego

CGC- Color Glass Condensate - Kolorowy Kondensat Szklany

Produkcja cząstek o dużych p_t w zderzeniach p(d)+A

p(d)+A: twarde rozproszenia w 'zimnym' ośrodku QCD

PDF-Funkcje rozkładu partonów Efekt Cronina Cieniowanie, efekt EMC Saturacja gluonów (CGC)?

Second b

Efekty stanu początkowego

Efekty

końcowego

Przekrój czynny na twarde rozproszenie

FF – funkcje fragmentacji Straty energii partonów (QGP?) Wtórne rozproszenia hadronów

stanu

Produkcja cząstek o dużych p_T

Dla procesów z dużym przekazem pędu obowiązuje faktoryzacja QCD: każde zderzenie nukleon-nukleon może być źródłem twardego rozproszenia.

Czynnik modyfikacji jądrowej: 'gęsta materia QCD'/'próżniaQCD '

$$R_{AA} = \frac{d^2 N_{AA} / dp_T dy}{\left< N_{coll} \right> d^2 N_{pp} / dp_T dy}$$

N_{coll} – liczba zderzeń N – N

 $R_{{\scriptscriptstyle A}{\scriptscriptstyle A}}{=}1$ (skalowanie z $N_{{\scriptscriptstyle coll}}$) Brak efektów jądrowych

Musimy znać d^2N_{pp}/dp_Tdy

Referencyjne widma p_T : p+p dla \sqrt{s} =200 GeV

Bardzo dobre dane referencyjne, zgodne z NLO pQCD!

$p+p \rightarrow h^{\pm}X$ (NSD)

Wykład 5

Porównanie rozkładów p_T: A+A i p+p

Czynnik modyfikacji jądrowej: 'gęsta materia QCD'/'próżnia QCD'

$$R_{AA} = \frac{d^2 N_{AA} / dp_T dy}{\left< N_{coll} \right> d^2 N_{pp} / dp_T dy}$$

Liczba punktowych zderzeń nukleonów jest proporcjonalna do funkcji grubości jądrowej: $T_{AA}(b) = N_{coll}(b) / \sigma_{pp}$

Przewiduje się tłumienie produkcji cząstek o dużych p_T ze względu na straty energii partonów przechodzących przez gęstą, kolorową materię (J.D.Bjorken,1982)

Takie tłumienie jest bezpośrednią eksperymentalną miarą gęstości kolorowych ładunków ośrodka przez który przechodzi parton!

ALE

Jeżeli stan początkowy NIE JEST niekoherentną superpozycją funkcji struktury nukleonów, ale jest ograniczony przez procesy fuzji gluon-gluon, prowadzące do saturacji gluonów, to także oczekujemy tłumienia produkcji cząstek o dużych p_T.

Porównanie korelacji typu dżet-dżet: A+A do p+p

Dwu-cząstkowe korelacje (typu dżet-dżet) w kącie azymutalnym: Korelacje cząstki trygera (typowo $p_T^{trig} = 4-6 \text{ GeV/c}$) ze stowarzyszonymi cząstkami ($p_T < p_T^{trig}$)

W zderzeniach Au+Au przy energiach RHIC nie jest możliwa pełna rekonstrukcja dżetów ze względu na duże tło 'miękkich' cząstek

Adler et al.(STAR), PRL90:082302 (2003)

Czynnik modyfikacji jądrowej w zderzeniach p+A i A+A przy niższych energiach

R > 1 : Poszerzenie widma p_⊤ na skutek wielokrotnych rozproszeń partonów przechodzących przez materię jądrową przed twardym zderzeniem.

*Użycie lepszych danych referencyjnych p+p $\rightarrow \pi^0 X$ daje tłumienie dla p_T=2-3 GeV/c dla zderzeń super centralnych.

R_{AA} dla danych z CERN-SPS

Lepsze dane referencyjne: p+p \rightarrow π^0 dla \sqrt{s}_{NN} = 17.3 GeV

[D.d'Enterria nucl-ex/0403055]

Wzmocnienie w peryferycznych a tłumienie w 1% najbardziej centralnych zderzeń?

Tłumienie pojawia się (onset) przy energii √s_{NN}≈ 20 GeV ?

Tłumienie odkryte przy energiach RHIC

R_{AA} – Zależność od centralności zderzenia

· $R_{AA} \approx 0.25$ at p_T >4 GeV/c dla najbardziej centralnych zderzeń Au+Au

Dwu-cząstkowe korelacje w $\Delta \phi$

produkty ich fragmentacji

oddziałują z gęstą materią.

Dwu-cząstkowe korelacje w $\Delta \phi$

STAR, PRL 90(2003)082302

Korelacje przód-tył ∆φ~π zależą od długości drogi przebytej w ośrodku: Silniejsze tłumienie (większe straty energii) w kierunku y (out-of-plane) niż w kierunku × (in-plane).

Dwu-cząstkowe korelacje w $\Delta \phi$

Cząstki stowarzyszone o małym p_T :

Δφ~0 - typowe dla dżetów
Δφ~π- szeroki rozkład w cos(Δφ) spodziewany z zasady zachowania pędu; <p_T> maleje z centralnością, aż do <p_T>_{bulk}

Równowaga pomiędzy cząstkami produkowanymi termicznie a cząstkami produkowanymi w twardych procesach?

Bezpośrednie fotony z centralnych zderzeń Au+Au

Bezpośrednie (direct) fotony nie są modyfikowane przez gorący/gęsty ośrodek

(mały przekrój czynny: brak wtórnych rozproszeń; brak fragmentacji)

 Bardzo dobra zgodność z rachunkami NLO pQCD, bez tłumienia, dla p+p przeskalowanych przez N_{coll}!

 \rightarrow pQCD dobrze opisuje twarde rozproszenia w centralnych zderzeniach Au+Au

Tłumienie produkcji cząstek o dużych p_T

central Au+Au:

Czy efekty związane ze stanem początkowym?

Saturacja gluonów: Mniejsza gęstość partonów (g+g-> g) Color Glass Condensate

W zderzeniach d+Au, efekty stanu początkowego takie jak dla Au+Au, ale brak efektów stanu końcowego. Brak tłumienia w zderzeniach d+Au oznacza, że tłumienie w Au+Au jest efektem stanu końcowego – straty energii partonów.

d+Au przy energii 200 GeV: eksperyment kontrolny

Interpretacja zjawiska tłumienia

Interpretacja teoretyczna zjawiska tłumienia

Wymrażanie dżetów (jet quenching): partony przechodzące przez kolorową materię tracą energię przez promieniowanie gluonów (wymaga dużych gęstości energii i dużych gęstości gluonów) M. Gyulassy, P. Levai, I. Vitev, X.-N.Wang

Tłumienie jest konsystentne ze scenariuszem zakładającym wymrażanie dżetów.

Nieelastyczne rozproszenia hadronów po fragmentacji

Obliczenia w ramach modelu transportu: W. Cassig, K. Gallmeiser, C. Greiner (NPA735,277)

Tylko ok..1/3 hadronów z fragmentacji rozprasza się nieelastycznie,. Za mało aby opisać silny efekt tłumienia w centralnych zderzeniach Au+Au.

Formacja plazmy kwarkowo-gluonowej?

Aby wnioskować, w oparciu o obserwowane tłumienie produkcji cząstek o dużych pędach poprzecznych, o formacji QGP musimy znać ilościowe odpowiedzi na następujące pytania:

- Czy faktoryzacja rzeczywiście obowiązuje w obecności gęstego ośrodka?
- W jakim stopniu są modyfikowane funkcje fragmentacji ?
- Jakie są niepewności modelowe w opisie zachowania gęstości energii w szybko rozszerzającym się układzie?
- Jaki jest ułamek energii traconej w fazie partonowej, a jaki w fazie hadronowej?

Zależność od rodzaju cząstki

Ograniczony zakres p_T : 2 < p_T < 5 GeV/c Brak dobrych danych referencyjnych dla p+p

 R_{CP} = Centralne/Peryferyczne A+A $R_{CP} = \frac{\langle N_{coll}^{P} \rangle}{\langle N_{coll}^{C} \rangle} \frac{d^{2}N_{AA}^{C} / dp_{T}d\eta}{d^{2}N_{AA}^{P} / dp_{T}d\eta}$ Universalny wypływ eliptyczny na kwark 0.15 – n=2 $\diamond \pi^+ + \pi^-$ PHENIX $n=3 \circ p+p$ STAR Preliminary (Au+Au @ 200 GeV) $\triangle K^+ + K^- PHENIX$ Scaling binary participant 0.1 1 v_2/n 0.05 н Ср n=6 • d K_{S}^{0} Λ+Λ 0-5% Transverse Momentum p_T/n (GeV/c) 10⁻¹ ⇒Rekombinacja Transverse Momentum p_{τ} (GeV/c) Tłumienie różne dla barionów i mezonów (koalescencja kwarków)

Zależność od rodzaju cząstki

W R_{AA} widać rozszczepienie p/ Λ/Ξ , którego nie było dla R_{CP} . Związane to jest z użyciem danych referencyjnych p+p!

Wykład 5

Zależność od rodzaju cząstki – R_{dA}

 \rightarrow To nie masa, ale skład kwarkowy jest ważny

Zależność od rodzaju cząstki – R_{dA} vs. R_{AA}

Wydaje się,że w d+Au też jest rozszczepienie barionów ale uporządkowanie jest przeciwne do tego obserwowanego w Au+Au.

Zależność od rodzaju cząstki

$2 < p_T < 5 GeV/c$

Anomalny skład hadronów $h^{\pm} = M^{\pm} + B^{\pm}$ $M^{\pm} \approx 2\pi^{0}$ $h^{\pm}/2\pi^{0} \approx 1 + B^{\pm}/M^{\pm}$

⇒Rekombinacja (koalescencja kwarków)

Porównanie do modeli koalescencji/rekombinacji kwarków

Modele koalescencji kwarków dobrze opisują v₂ oraz w miarę zadowalająco R_{CP}.

Ale nie potrafią przewidzieć zależności od centralności zderzenia czy też korelacji w ∆∳.

Zależność od rapidity dla zderzeń Au+Au

R_{CP}(η) dla Au+Au

 $R_{h}=R_{cp}(\eta=2.2)/R_{cp}(\eta=0)$

Silniejsze tłumienie dla dużych η (do przodu). Piony sa silnie tłumione, a protony są wzmocnione.

Zależność od rapidity dla zderzeń d+Au

R_{dA}(η) in d+Au – szukanie efektów saturacji gluonów

High p_T at $y \approx 0$: x(Au)~10⁻² Low p_T at y > 0: x(Au)~10⁻⁴ $x_2 = (m_T/\sqrt{s}) e^{-y}$

Pomiary dla dużych y dla zderzeń d+A pozwalają badać małe x w A!

R_{dAu} - Tłumienie widać dla dużych η Model saturacji gluonów opisuje R_{dAu,} R_{CP} vs.η

D. Kharzeev, Y.V. Kovchegov, K. Tuchin, hep-ph/0405054

Zależność od rapidity dla zderzeń d+Au

ALE

Modyfikacja pQCD (z uwzględnieniem cieniowania jądrowego oraz wtórnych rozproszeń) także opisuje dane dla d+Au

e.g. G.G. Barnafoldi, G. Papp, P. Levai, G. Fai, nucl-th/0404012

A jak wytłumaczyć dane z eksperymentu PHENIX dla η< 0?

Zależność od energii

R_{AA} dla Au+Au przy √s_{NN} =200 i 62.4 GeV

Nie widać wyraźnego progu, raczej gładka zależność od energii Dane dla Au+Au i p+p przy √s_{NN} ~ 20-30 GeV at RHIC?

Faktoryzacja $R_{AA}(\sqrt{s_{NN}}, centralność)$

Faktoryzacja $R_{AA}(\sqrt{s_{NN}}, centrality)$

Popatrzmy dokładniej na oddziaływania peryferyczne

PHOBOS (45 - 50 %) 62.4 i 200 GeV

R_{PC}^{N_{part} vs. p_T, PHOBOS i STAR, 200 GeV}

PLB 578297, 2004, PRL 91, 172302, 2003

Wykład 5

vs. p_T, STAR 130 and 200 GeV

Wykład 5

Podsumowanie

Mnóstwo interesujących wyników z eksperymentów RHIC

- pokrywających zasięg w p_T aż do ~12 GeV/c (więcej niż 12 rzędów wielkości w σ_{inv}) - wiele efektów zaobserwowano po raz pierwszy

Cząstki o dużych p_T w centralnych zderzeniach Au+Au

- Widma tłumione o czynnik 4-5 w stosunku do p+p przy √s_{NN} = 200 GeV; mniejsze tłumienie przy niższej energii - 62.4 GeV
- 2) Dżeto-podobne korelacje dla $\Delta \phi \sim 0$, porównywalne do p+p
- 3) Korelacje dla $\Delta \phi \sim \pi$ silnie zredukowane w porównaniu do p+p, redukcja zależy od długości drogi przebytej w ośrodku
- 4) Skład hadronów niezgodny z funkcjami fragmentacji znanymi z p+p i e⁺e⁻; wyraźnie różny stosunek barion/mezon
- > Cząstki o dużych p_T w zderzeniach d+Au dla $\eta \approx 0$
 - 5) Wzmocnienie widm (efekt Cronina)
 - 6) Brak redukcji korelacji dla $\Delta \phi \sim \pi$

Możliwe wytłumaczenie obserwacji (1-6):

Straty energii partonów + rekombinacja kwarków w gęstej materii QCD. Czy to rzeczywiście jest materia złożona ze swobodnych q i g?

Podsumowanie

Cząstki o dużych p_T w zderzeniach d+Au dla dużych η Widma tłumione o czynnik ~2

> Możliwe wytłumaczenie: Saturacja gęstości partonów w stanie początkowym