Fizyka zderzeń relatywistycznych ciężkich jonów

- Wykład 0: LHC okno na Mikroświat
 Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty
 Wykład 2: Plazma kwarkowo-gluonowa
 Wykład 3: Geometria zderzenia, stan początkowy-gęstość energii, produkcja entropii
 Wykład 4: Ewolucja systemu efekty kolektywne
 Wykład 5: Procesy z dużym przekazem pędu
 Wykład 6: Model saturacji. Kolorowy Kondensat Szklany.
 Wykład 7: Eksperyment PHOBOS przy akceleratorze RHIC
- Wykład 8: Fizyka ciężkich jonów w eksperymencie ATLAS (LHC)

Plan

- Anizotropie w rozkładach kątow azymutalnych
- Wypływ eliptyczny, kierunkowy
- Metody pomiaru wypływu eliptycznego
- Wyniki doświadczalne
- Początkowa asymetria przestrzenna
- Opis hydrodynamiczny
- Nowy stan materii: idealna ciecz

Efekty kolektywne - wypływ eliptyczny

Widok zderzenia w płaszczyźnie prostopadłej do płaszczyzny reakcji (x' $\equiv \vec{b}$, z \equiv oś wiązki):

Początkowa deformacja w układzie współrzędnych Rozpraszanie cząstek Asymetria azymutalna w rozkładach pędów "przepływ eliptyczny"

Kolektywny wypływ ('flow') cząstek

Badanie asymetrii- motywacja

- czuła na wczesne etapy ewolucji systemu (gradienty ciśnienia przy maksymalnej kompresji materii)
- czuła na równanie stanu, które rządzi ewolucją systemu ('miękkie' równanie stanu dla QGP)
- wielkość czuła na stopień osiągniętej równowagi (wtórne rozproszenia cząstek)
- czuła na straty energii partonów w gęstym ośrodku (rozproszenia partonów o dużych pędach poprzecznych zależą od przebytej drogi)

Kolektywny wypływ ('flow') cząstek

Pomiar końcowej anizotropii azymutalnej

Rozwinięcie Fourierowskie rozkładów kątów azymutalnych:

$$dN/d(\phi - \psi_{R}) = N_{0} (1 + 2v_{1}\cos(\phi - \psi_{R}) + 2v_{2}\cos(2(\phi - \psi_{R})) + ...)$$

$$Izotropowy poprzeczny
wypływ
Wypływ kierunkowy-directed flow, v_{1}:$$

$$v_{1} = \langle \cos(\phi - \psi_{R}) \rangle \equiv \left\langle \frac{p_{x}}{p_{T}} \right\rangle$$

$$v_{2} = \langle \cos(\phi - \psi_{R}) \rangle \equiv \left\langle \left(\frac{p_{x}}{p_{T}}\right)^{2} - \left(\frac{p_{y}}{p_{T}}\right)^{2} \right\rangle$$

Trzy rodzaje 'wypływów'

• Izotropowy wypływ radialny (z rozkładów p_T)

Anizotropowy wypływ ukierunkowany:

Anizotropia eliptyczna

<cos2 (φ-ψ_R)> < 0 Od płaszczyzny reakcji 'OUT-OF-PLANE' (niskie energie)

Wyznaczenie płaszczyzny reakcji ψ_R

Korelacja pojedynczej, każdej cząstki z płaszczyzną reakcji indukuje korelacje pomiędzy cząstkami:

$$\psi_{n} = \frac{1}{n} \left(\tan^{-1} \frac{\sum_{i} w_{i} \sin \phi_{i}}{\sum_{i} w_{i} \cos \phi_{i}} \right)$$

$$\mathbf{v}_{n}^{obs} = \left\langle \mathbf{cos}[\mathbf{n}(\phi - \psi_{n})] \right\rangle$$

Test poprawności: płaski rozkład kątów ψ_n

Wyznaczenie płaszczyzny reakcji

Ale: skończona liczba cząstek \Rightarrow ograniczona dokładność wyznaczonej płaszczyzny przypadku Poprawka na zdolność rozdzielczą: $V_n = V_n^{obs} / \langle \cos(\psi_n - \psi_R) \rangle$ Dwa pod-przypadki o tej same liczbie cząstek: $\psi_n^a = \psi_n^b$

• Założenie; tylko korelacje związane z płaszczyzną reakcji

$$\begin{split} \left\langle \cos n \! \left(\psi_n^a - \psi_n^b \right) \right\rangle &= \left\langle \cos n \! \left(\psi_n^a - \psi_R \right) \right\rangle \! \left\langle \cos n \! \left(\psi_n^b - \psi_R \right) \right\rangle \\ \\ \text{Poprawka:} & \left\langle \cos n \! \left(\psi_n^a - \psi_R \right) \right\rangle &= \sqrt{\left\langle \cos n \! \left(\psi_n^a - \psi_n^b \right) \right\rangle} \\ \\ \text{V}_n &= \frac{\left\langle \cos n \! \left(\phi - \psi_n \right) \right\rangle}{\sqrt{\left\langle \cos n \! \left(\psi_n^a - \psi_n^b \right) \right\rangle}} \end{split}$$

Pomiar współczynnika v₂

W doświadczeniu mierzymy kąty φ=p_y/p_x

Przybliżenie
$$\psi_{R}$$
 przez ψ_{2} :
 $\psi_{2} = 0.5 \cdot \tan^{-1} \left(\frac{\sum \sin(2\phi_{i})}{\sum \cos(2\phi_{i})} \right), i = 1,...N_{meas}$

 $\textbf{v_2} \ \textbf{(}\psi_2\textbf{)} = \langle \textbf{cos[2(}\phi\textbf{-}\psi_2\textbf{)]} \rangle$

Oszacowanie zdolności rozdzielczej w oparciu o ψ₂ wyznaczone w dwóch symetrycznych zakresach η (N:η<0; P:η>0):

$$\mathbf{res} \equiv \left\langle \cos[2(\psi_2^{\mathsf{N}} - \psi_2^{\mathsf{P}})] \right\rangle$$

Poprawka na zdolność rozdzielczą

$$v_2^{\text{Res.Corr.}} = v_2(\psi_2)/\sqrt{\text{res}}$$

Pomiar współczynnika v₂ w oparciu o korelacje dwucząstkowe

Nie wymaga znajomości płaszczyzny reakcji

- 1. Rozkład różnic $\Delta \phi = \phi_i \phi_k$ dla każdej pary cząstek (i,k)
- 2. Wyznaczenie dwu-cząstkowej funkcji korelacji: $C(\Delta \phi) = \frac{N_{corr} (\Delta \phi)}{N_{uncorr} (\Delta \phi)}$

 \textbf{N}_{corr} – rozkład $\Delta \phi$ dla par cząstek z tego samego przypadku

N_{uncorr} – rozkład ∆φ dla par cząstek, każda cząstka z innego przypadku przypadku ₹ ^{1.1}

$$C(\Delta \phi) \propto 1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n\Delta \phi)$$

Pomiar współczynnika v₂ : inne metody

Szukamy efektów kolektywnych \rightarrow korelacje pomiędzy wieloma cząstkami Kumulanty wyższego rzędu: np. korelacje pomiędzy 4 cząstkami z odjętymi korelacjami 3- i 2-cząstkowymi |G[⊕](ir)| $\bullet \theta = 0$ $\theta = \pi/10$ $= 2\pi/10$ $= 3\pi/10$ $\theta = 4\pi/10$ 0.8 <u>Szukanie 'zer' funkcji generacji</u> 0.6 korelacji wielocząstkowych Metoda Lee-Yang Zeroes 0.4 0.2 a) 0.005 0.01

Eliptyczny wypływ – oczekiwania

Eliptyczny wypływ – pomiary

Zależność od centralności zderzenia Au+Au E_{cm}=130 GeV/n

Eliptyczny wypływ – pomiary

Zależność od centralności zderzenia Au+Au E_{cm}=200 GeV/n

Eliptyczny wypływ – zależność od energii

Ruch kolektywny największy przy energii RHIC Wyższy stopień termalizacji układu osiągany przy energii RHIC niż w SPS/AGS

Różne centralności Au+Au E_{cm}=200 GeV/n

→ Podobny kształt

Eliptyczny wypływ – zależność od η i energii

W układzie spoczynkowym jednego z jąder Au+Au

Wykład 4

Kierunkowy wypływ – zależność od η i energii

v₁ także skaluje się (nie zależy od energii) w szerokim zakresie η'=|η|-y_{beam}

- Obserwowane wysycenie v₂ dla p_T > 2 GeV/c
- Wzrost z p_T aż do 2 GeV/c zgodny z hydrodynamiką
- Nie-równowagowe wkłady:jety ('unquenched') \rightarrow malenie z p_T
- Asymetryczne straty energii partonów: wzrost $v_2 z p_T$
- Wysycenie: Konkurencyjne działanie obu efektów
 - Konieczny opis modelowy aby rozwikłać wkłady od obu efektów

0<η<1.5

 v_2 zaczyna maleć przy $p_T \sim 6-7$ GeV/c

Dla zidentyfikowanych cząstek

v₂ – zależność od systemu zderzenia

Główny cel: porównanie Au+Au i Cu+Cu

v₂ dla Au+Au i Cu+Cu

v₂(N_{part}) dla |η| <1

Zagadka: mniejszy system jest bardziej wydajny w transformacji początkowej asymetrii przestrzennej w końcową asymetrię pędową!!

V₂ jest duże nawet dla najbardziej centralnego zderzenia Cu+Cu (o małej asymetrii przestrzennej)!

Ekscentryczność jako miara asymetrii przestrzennej

Przyjmując za oś x kierunek parametru zderzenia, definiujemy standardowo ekscentryczność poprzez szerokości rozkładu N_{part} w x i y

eccentricity

$$\varepsilon_{std} = \frac{\sigma_{y}^{2} - \sigma_{x}^{2}}{\sigma_{y}^{2} + \sigma_{x}^{2}}$$

Wykład 4

V₂ ~ E

$v_2(N_{part}) dla |\eta| < 1$

Dla Cu+Cu, N_{part} = 100, v₂=0.03 podczas gdy ε=0 Coś jest źle!

v₂(N_{part}) dla |η| <1

Rozkłady ϵ

-Zderzenia AuAu collisions o tych samych N_{Part}

- •Zderzenia są modelowane wg. modelu Glaubera dla różnych parametrów zderzenia i następnie sortowane według Npart
 - Dla każdego Npart tworzymy rozkład $\boldsymbol{\epsilon}$

• Czarna linia oznacza <ε>

Rozkłady ϵ

- Rozkład ε dla Cu+Cu jest znacznie szerszy niż dla Au+Au
- Dla Cu+Cu jest także więcej przypadków o ε < 0

Co znaczy $\epsilon < 0$?

$$\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Ujemna ekscentryczność pojawia się jeżeli $\sigma_x^2 > \sigma_y^2$, na skutek fluktuacji w rozkładach pozycji nukleonów

Mniejszy układ zderzenia (Cu+Cu) jest bardziej czuły na fluktuacje

Nowa definicja ekscentryczności

Tak zmienić układ współrzędnych, aby maksymalizować kształt eliptyczny (a principal axis transformation)

"Participant" eccentricity: ϵ_{part}

E_{std} i E_{part}

v₂ – zależność od systemu zderzenia

Hydrodynamika

- służy do opisu układów składających się z dużej liczby cząstek
- układ jest traktowany jako ośrodek ciągły tj. można zdefiniować "element płynu" jako obszar wielkości znacznie większej niż odległości międzycząsteczkowe
- dynamikę układu rozumie się jako dynamikę elementów płynu
- stosuje się więc opis makroskopowy charakteryzując układ wielkościami termodynamicznymi takimi jak entropia czy energia wewnętrzna jednocześnie używając wielkości klasycznych takich jak pęd w odniesieniu do elementu płynu

Hydrodynamika c.d.

Równania opisujące ruch elementów płynu (a właściwie rozkład odpowiedniego pola, np. prędkości) otrzymuje się poprzez wykorzystanie zasad zachowania:

Prawo zachowania energii i pędu

 $\partial_{\mu}T^{\mu\nu} = 0$

tensor energii i pędu dla płynu doskonałego

 $T^{\mu\nu} = (\varepsilon + P) u^{\mu}u^{\nu} - P g^{\mu\nu}$

 ${\mathcal E}$ - gęstość energii, P - ciśnienie,

 u^{μ} - czteroprędkość elementu płynu

➤ relacje termodynamiczne $ε + P = Ts \qquad dP = sdT \qquad dε = Tds$

Hydrodynamika w zderzeniach ciężkich jonów

- opisuje początkową ewolucję układu po zderzeniu traktując ekspandujący obszar jako ciecz o właściwościach odpowiednich do etapu ekspansji
- poszczególne etapy:
 - założenie lokalnej równowagi termodynamicznej
 - rozwiązanie numeryczne równań hydrodynamiki relatywistycznej z odpowiednimi warunkami początkowymi i przy odpowiednich założeniach z zadanym równaniem stanu
 - tworzenie cząstek z powstałej hiperpowierzchni za pomocą procedury Coopera i Frye'a

Warunki początkowe – entropia, gęstość (barionowa) są proporcjonalne do rozkładu nukleonów biorących udział w reakcji:

$$s(x,y,\tau_0) = \frac{C_s}{\tau_0} \frac{dN_p}{dx \, dy} \qquad \qquad n_B(x,y,\tau_0) = \frac{C_{n_B}}{\tau_0} \frac{dN_p}{dx \, dy}$$

Hydrodynamika: równanie stanu

- równanie stanu
 - EOS I P=e/3: idealny gaz relatywistycznych bezmasowych cząstek
 - EOS Q :uwzględnia masy hadronów i przejście fazowe pomiędzy materią hadronową i plazmą kwarkowo-gluonową
 - EOS H dla małych gęstości energii: gaz rezonansów hadronowych; dla dużych gęstości energii przybliżenie z modelu worków: P=(e-4B)/3

 dla danych warunków początkowych brane jest odpowiednie równanie stanu

Hydrodynamika: przepis na 'freeze-out'

- W miarę jak system rozszerza się i stygnie dochodzi w końcu do sytuacji w której z obszaru hydrodynamicznego zaczynają się rodzić cząstki
- Zdarzenie to traktuje się jako tzw. freeze-out, otrzymując pewną hiperpowierzchnię dla której temperatura równa jest pewnej temperaturze krytycznej (T freeze-out)
- Do hiperpowierzchni otrzymanej dla takiej temperatury stosuję się tzw. recepturę Coopera i Frye'a. Posługując się tą procedurą otrzymuje się rozkłady dla danego (i-tego) rodzaju cząstek

$$\begin{split} E \frac{dN}{d^3 p} &= \int_{\Sigma} f(x,p,t) p \cdot d\sigma(x) \\ &= \frac{d}{(2\pi)^3} \int_{\Sigma} \frac{p \cdot d\sigma(x)}{\exp\left[(p \cdot u(x) - \mu(x))/T(x)\right] \pm 1} \,, \end{split}$$

E - energia; p - pęd; f - przestrzeń fazowa; u - cztero-prędkość; dσ - wektor prostopadły do elementu hiperpowierzchni; μ - potencjał chemiczny; d - czynnik degeneracyjny (=3 dla pionów); T - temperatura freeze-out

Wypływ eliptyczny

akceleratora RHIC współczynnik anizotropii jest poprawnie opisany przez modele hydrodynamiczne, zakładające idealny przepływ, lepkość=0 (mfp=0)!!

Hydrodynamika dobrze opisuje dane dla różnych cząstek przy małych pędach poprzecznych.

To daje silny argument, że nowy stan materii kreowany w zderzeniach ciężkich jonów przy energiach akceleratora RHIC jest silnie-sprzężoną plazmą kwarkowo-gluonową z bardzo szybko ustaloną równowagą termodynamiczną.

Krakowski model hydrodynamiczny

W. Florkowski, M. Chojnacki

Podsumowanie

Zgodność zmierzonych asymetrii azymutalnych z rachunkami 'idealnej' hydrodynamiki, to silny argument, że nowy stan materii kreowany w zderzeniach ciężkich jonów przy energiach akceleratora RHIC jest silnie-sprzężoną plazmą kwarkowo-gluonową, o właściwościach zbliżonych do idealnej cieczy, z bardzo szybko ustaloną równowagą termodynamiczną.

Oczekiwano 'gaz'→

Znaleziono ←'ciecz'