Fizyka zderzeń relatywistycznych ciężkich jonów

- Wykład 0: LHC okno na Mikroświat
- Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty
- Wykład 2: Plazma kwarkowo-gluonowa
- Wykład 3: Geometria zderzenia, stan początkowy-gęstość energii, produkcja entropii
- Wykład 4: Ewolucja systemu efekty kolektywne
- Wykład 5: Procesy z dużym przekazem pędu
- Wykład 6: Eksperyment PHOBOS przy akceleratorze RHIC
- Wykład 7: Fizyka ciężkich jonów w eksperymencie ATLAS (LHC)

Plan

- · Geometria zderzenia (centralność)
- Stan początkowy (produkcja entropii, gęstość energii)

Centralność: Teoria vs. Eksperyment

Rachunki teoretyczne

<u>Podstawowe dane wejściowe:</u> *b*-parametr zderzenia

- $\Rightarrow N_{\text{part}}, N_{\text{coll}}$ uzyskane z rachunków modelowych
- \Rightarrow Generacja cząstek
- Pomiary doświadczalne

<u>Podstawowe dane wejściowe :</u> Pomiar cząstek

- \Rightarrow estymacja N_{part} , N_{coll} , b
- Oparte na pewnych założeniach
- Pozwalają na ocenę błędów systematycznych
 - N_{coll} liczba binarnych zderzeń nukleon–nukleon N_{part} – liczba 'zranionych' nukleonów (nukleony, które przynajmniej jeden raz oddziałały)

Pomiar centralności zderzenia

Centralność a pomiar cząstek w licznikach scyntylacyjnych (Paddle Counters)

Założenia

<u>monotoniczna</u> relacja (w średniej) pomiędzy X (b,N_{part},N_{spec},N_{coll}) a mierzoną wielkością M (N_{ch}(Δη))d(X)/d (M) > 0 (lub < 0) dla wszystkich wartości (M)

Określony procent przypadków wybranych z rozkładu dN $_{\rm ev}/dM$ powinien odpowiadać $\langle X\rangle$ dla tego samego procentu przypadków

Potwierdzenie monotonicznej zależności

Eksperyment: Błędy systematyczne

Całkowity przekrój czynny

•

- Ułamek czego? (modele mają poprawną wartość σ_{TOT}) -
- RHIC: eksperymenty nie mierzą σ_{TOT}
- Zamiast σ_{τοτ}, oszacowanie wydajności trygera w oparciu o model (np. HIJING)
 - Systematyczny błąd tego oszacowania wchodzi do ostatecznych wyników.
 - Duży dla małych N_{part}!

3% niepewności dla σ_{TOT} \rightarrow 20% niepewności dla N_{part}

Centralność zderzenia: Problemy doświadczalne

- Oszacowanie N_{part} nie jest trywialne
- Oszacowanie N_{coll} jest jeszcze trudniejsze, ponieważ nie jesteśmy ograniczeni przez 2A, ale przez A²!
- Krytycznym elementem jest znajomość całkowitego przekroju czynnego

•Ale nawet teoretycy mają trudności! Rachunki Monte Carlo vs. Przybliżenie optyczne

Rachunki Glauberowskie

- Nukleony są rozłożone według funkcji gęstości (np. Woods-Saxon)
- Nukleony poruszają się po prostoliniowych trajektoriach, i nie zmieniają kierunku przy przejściu przez drugie jądro
- Nukleony oddziaływają zgodnie z nieelastycznym przekrojem czynnym σ_{NN} zmierzonym w zderzeniach pp
 - Uczestnicy liczba nuklaonów, które oddziałały (przynajmniej raz)
 - Binarne zderzenia liczba zderzeń nukleon-nukleon

Roy Glauber

Całkowity przekrój czynny A+B

$$\sigma_{AB} = \int d^{2}b \int d^{2}s_{1}^{A} \dots d^{2}s_{A}^{A}d^{2}s_{1}^{B} \dots d^{2}s_{B}^{B} \times \text{Konfiguracja przestrzenna} \\ \mathcal{T}_{A}(s_{1}^{A}) \dots \mathcal{T}_{A}(s_{A}^{A})\mathcal{T}_{B}(s_{1}^{B}) \dots \mathcal{T}_{B}(s_{B}^{B}) \times \text{Profil (grubość) jadrowy} \\ \left\{ 1 - \prod_{j=1}^{B} \prod_{i=1}^{A} \left[1 - \sigma \left(b - s_{i}^{A} + s_{j}^{B} \right) \right] \right\} \qquad \text{Człon opisujący} \\ \text{prawdopodobieństwo} \\ \text{oddziaływań}$$

Bardzo trudne do wyliczenia. Rozwiązanie - Przybliżenie optyczne:

$$\sigma_{AB} = \int d^{2}b \left\{ 1 - \left[1 - \sigma_{NN} T_{AB}(b) \right]^{AB} \right\}$$

gdzie $T_{AB}(b) = \int d^{2}s T_{A}(b) T_{B} \left\| \vec{b} - \vec{s} \right\|$

Słuszne dla dużych A i/lub kiedy σ_{NN} jest mały.

Obliczenie N_{part} i N_{coll}

Liczba uczestników

$$N_{part}^{AB}(b) = A \int d^2 s T_A(\vec{s}) \Big\{ 1 - \Big[1 - \sigma_{NN} T_B(\vec{s} - \vec{b}) \Big]^B \Big\} + (A \Leftrightarrow B)$$

Liczba zderzeń

$$N_{coll}^{AB}(b) = AB \int d^2 s T_A(\vec{s}) T_A(\vec{s} - \vec{b}) \sigma_{NN}$$

Rachunki Monte Carlo

- Parametr zderzenia i współrzędne nukleonów generowane przypadkowo ze znanych rozkładów
- Oddziaływanie zachodzi jeżeli dystans pomiędzy nukleonami d <sqrt (σ_{NN}/π)
- Dla każdego przypadku można wprost zliczyć N_{part}, N_{coll}

Dwa podejścia – dwie odpowiedzi?

- HIJING Au+Au 130 GeV
 - Podejście Monte Carlo
 - Profil jądrowy gausowski

- Kharzeev/Nardi
 - Przybliżenie optyczne
 - Punktowe nukleony

Wnioski

- Doświadczalne & teoretyczne problemy
 - Ale oba uderzają w doświadczalników!
- N_{part} i N_{coll} są precyzyjnie określone dla zderzeń centralnych
 - Potencjalnie duże niepewności dla zderzeń peryferycznych
 - Zależność od danych wejściowych dla modelu Glaubera jak i od typu oddziaływań (przekrojów czynnych), które są uwzględniane

Dlaczego znajomość geometrii zderzenia jest tak ważna?

Miękkie procesy vs. Twarde zderzenia

Zderzenia ciężkich jonów-Produkcja entropii

- Entropia jest produkowana w czasie ewolucji systemu
 - Na którym etapie produkuje się jej najwięcej?
 - Początkowy, partonowy czy hadronowy etap?
 Pomiary krotności cząstek

Wykład 3

Pomiary krotności produkowanych cząstek

Informacja wycałkowana po wszystkich etapach zderzenia: stan początkowy, dynamika partonów, dynamika hadronów

Geometria

Parametr zderzenia, uczestnicy, zderzenia binarne

Produkcja entropii

Hamowanie, produkcja gluonów, nasycenie g, fragmentacja Ewolucja czasowa

Formacja, ekspansja, wtórne oddziaływania, emisja

Jeżeli potrafimy wyodrębnić trywialną rolę geometrii, to QCD da nam informacje o entropii, o ile ta informacja 'przeżyje' proces hadronizacji.

Rapidity/pseudo-rapidity

 Zderzenia pomiędzy hadronami charakteryzują się ograniczonym transferem pędu poprzecznego

- Większość cząstek niesie tylko mały ułamek pędu podłużnego protonu (x = $p_z/p_{z,max}$)
- Zmienna "Rapidity" poszerza zakres dynamiczny (x<.1) $y = \frac{1}{2} ln \left(\frac{E + p_z}{E - p_z} \right) \sim ln(x)$

Pomiary w centralnym obszarze rapidity

 W zderzeniach nukleon-nukleon (NN), badamy wysokość "plateau"

 $\mathbf{y}_{\text{CMS}} \approx \eta_{\text{CMS}} \approx \mathbf{0}$

$$dN / d\eta |_{\eta|<1}$$

 W zderzeniach A+A, normalizujemy gęstość cząstek na parę oddziaływujących nukleonów, aby bezpośrednio porównać z NN

$$\left. \frac{dN \, / \, d\eta}{N_{part} \, / \, 2}
ight|_{\eta|<1}$$

Gęstość cząstek produkowanych w środkowym obszarze rapidity dla centralnych zderzeń Au+Au

Ekstrapolacja do zderzeń Pb+Pb @LHC

200 GeV Au+Au 6% najbardziej centralnych przypadków dN/dη = 650 ± 35 55% więcej niż w p+p

 $\frac{\text{Ekstrapolacja do LHC}}{\sqrt{s_{NN}(LHC)}=30 \sqrt{s_{NN}(RHIC)}}$

A + A Fit $dN/d\eta \approx 1300$ Model saturacji $dN/d\eta \approx 2000$ HIJING MC $dN/d\eta \approx 6000$

Zależność od centralności zderzenia dla η≈0

Zależność od centralności zderzenia dla $\eta{\approx}\textbf{0}$

Model saturacji:

- Rozkład gluonów rośnie szybko dla małych x: ×G(x)~x^{-λ}
 - ~0.25 z fitów do danych HERA)

Gluony o rozmiarach π/Q² przekrywają się w płaszczyźnie poprzecznej

Przy skali saturacji gluony wypełniają całą powierzchnię

poprzeczną

 $g+g \rightarrow q$

$$N_g \frac{\pi}{Q_s^2} = \pi R_A^2$$

$$\boldsymbol{Q}_{s}^{2} = \alpha_{s} \left(\boldsymbol{Q}_{s}^{2} \right) \boldsymbol{N}_{g} \left(\boldsymbol{x}, \boldsymbol{Q}_{s}^{2} \right) \boldsymbol{A}^{1/3}$$

Poniżej skali saturacji Q_s² następuje fuzją gluonów

Wykład 3

Modele dwu-składnikowy i saturacyjny

- Porównanie z danymi PHOBOS'a w centralnym obszarze rapidity dla różnych energii
- Model dwu-składnikowy używa modelu Glauber'a do interpolacji pomiędzy pp i centralnymi zderzeniami AA
 - x zmienia się od .09 do .11 dla √s_{NN} od 130 do 200 GeV
 - Opiera się o produkcję mini-jetów (pQCD)
- Model saturacyjny także opisuje dane i zależność od energii dla N_{part}>60

Pomiary $dN_{ch}/d\eta$ w 4π

- Dlaczego patrzeć na wszystko?
 - Opis pełnego przypadku
 - Selekcja centralności
 - Wyznaczenie płaszczyzny reakcji

Detektory krotności 'rozwinięte'-pojedynczy przypadek

PHOBOS - $dN_{ch}/d\eta$

Zderzenia Au+Au przy √s=19.6, 130, 200 GeV

- dN/d η dla $|\eta|$ < 5.4 w całym zakresie kąta azymutalnego
- Centralność z liczników Paddle (130/200) & N_{hits} (19.6)
- 50% całkowitego przekroju czynnego (N_{part}~65-360)

Model saturacyjny

 Wysycony stan początkowy pozwala na określenie stanu końcowego

$$\cdot N_h = c \times N_g$$

$$\frac{dN}{d\eta} \cong cN_{part} (\sqrt{s})^{\lambda} f(\lambda | \mathbf{y} |, \mathbf{Q}_{s})$$

 λ ~0.25 z dopasowania do danych z HERA: xG(x)~ $x^{-\lambda}$

Kharzeev & Levin, nucl-th/0108006

Fit do danych PHOBOS'a przy 130 GeV aby wyznaczyć c, Q_s

Model saturacyjny przy energii 200 GeV

Model opisuje dane dla centralnych zderzeń Au+Au

 Gęstość partonów w stanie początkowym wydaje się być dostatecznie wysoka aby osiągnąć stan nasycenia.

Graniczne zachowanie rozkładów dN/d η

Graniczna fragmentacja

Hipoteza granicznej fragmentacji jest słuszna dla zderzeń A+A w szerokim zakresie η (większym niż połowa zakresu dostępnego na produkcję cząstek). Zakres obszaru rośnie z √s_{NN}.

dN_{ch}/dη' – zależność od centralności

Kształt zmienia się z centralnością Korelacje długo-zasięgowe? Zachowanie energii? Hamowanie?
Gęstości wycałkowane po całym obszarze słabo zależą od centralności

Całkowita krotność naładowanych cząstek

N_{ch} – zależność od energii

- Jeżeli dominuje promieniowanie gluonów, to ewolucja QCD jest odpowiedzialna za krotności produkowanych cząstek.
- Efekty koherencji w QCD prowadzą do tłumienia emisji miękkich gluonów pod dużymi katami.
- Podstawa rachunków Mueller'a ⟨N_{ch}⟩ vs. √s w e⁺e⁻!
 - Także znane jako uporządkowanie kątowe lub efekt struny w przypadkach z 3-ma jetami.
 Wykład 3

N_{ch} – zależność od energii

N_{ch} – zależność od energii

Rozkłady rapidity przy energii 200 GeV

e⁺e⁻ mierzy dN/dy_T (rapidity względem osi "thrust")

Zaskakująca zgodność kształtów pomiędzy AA/e⁺e⁻/pp Związek pomiędzy perturbacyjnym i nie perturbacyjnym podejściem ?

N_{ch} – zależność od centralności

Powrót do modelu zranionych nukleonów...

Wykład 3

Podsumowanie pomiarów krotności

- Model 2-składnikowy jest słuszny tylko w środkowym obszarze rapidity
- Modele saturacyjne także opisują dane w mid-rapidity
- Graniczna fragmentacja obserwowana dla rożnych systemów
 - AA, pp, e⁺e⁻ → Uniwersalność obszaru do przodu
 - Dane wykazują graniczne zachowanie w η'
- Uniwersalność całkowitej krotności
 - = Taka sama dla wszystkich systemów przy tym samym \sqrt{s} ($\sqrt{s_{eff}}$ dla pp)
 - Zaskakujący związek pomiędzy Au+Au & e⁺e⁻

Podsumowanie pomiarów krotności

- Całkowite krotności w AA są proporcjonalne do N_{part}!
- Czy zderzenia AA przy wysokich energiach osiągają granicę czystej fragmentacji qq?
 - Trywialne, czy przypadkowe? (dane przy √s=56 GeV mogłyby rozstrzygnąć)
 - Czy QCD potrafi to przewidzieć?
 - Nowe spojrzenie na proces produkcji cząstek?

Gęstość energii

Czy jest związek pomiędzy gęstością cząstek w centralnym obszarze rapidity a gęstością energii?

PHENIX pokazał, że energia poprzeczna (E_T) na cząstkę jest stała:

$$(dE_{\tau} / d\eta)_{\eta \approx 0} = 503 \pm 2 GeV$$

Jeżeli R~1.18 $A^{1/3}$ & τ_o ~ 1fm/c to:

 ϵ (130 GeV) = 4.6 GeV/fm³

Gęstość energii

Jeżeli wierzyć rachunkom na sieciach...

Implikacje:

Duża początkowa gęstość energii (wysoka temperatura)
Ograniczona produkcja entropii w końcowych etapach ewolucji.

