Fizyka relatywistycznych zderzeń ciężkich jonów

- Wykład 0: LHC okno na Mikroświat
- Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty
- Wykład 2: Plazma kwarkowo-gluonowa
- Wykład 3: Geometria zderzenia, stan początkowy-gęstość energii, produkcja entropii
- Wykład 4: Ewolucja systemu efekty kolektywne
- Wykład 5: Procesy z dużym przekazem pędu
- Wykład 6: Eksperyment PHOBOS przy akceleratorze RHIC
- Wykład 7: Fizyka ciężkich jonów w eksperymencie ATLAS (LHC)

Badanie silnie oddziaływującej materii w ekstremalnych warunkach

Gorąca i/lub gęsta materia

Między-dyscyplinarny charakter badań:

- Fizyka cząstek elementarnych
- •Fizyka jądrowa
- Astrofizyka
- Kosmologia

Chromodynamika Kwantowa

PROPERTIES OF THE INTERACTIONS

Interaction Property		Gravitational	Weak	Electromagnetic	Str	ong
		Gramational	(Electr	oweak)	Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charge	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag	10 ^{−18} m	10 ⁻⁴¹	0.8	1	25	Not applicable
for two u quarks at:	3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	to quarks
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

Czy resztkowe oddziaływanie silne jest pewnym przybliżeniem kwarkowo-gluonowej teorii QCD?

Dwa oblicza silnych oddziaływań

QCD: dwie szczególne własności

Tym silniejsze jest oddziaływanie między kwarkami im bardziej chcemy je odseparować, tak jak by były związane gumową liną.

nawet dla r $\rightarrow \infty$!

 $V^{QCD} \sim -a/r + \sigma r$

QCD: dwie szczególne własności (c.d.)

 $m_a = 0$

QCD i próżnia QCD są symetryczne

Lagranżjan jest niezmienniczy względem transformacji lewa-prawa (Równanie Dirac'a ma dwa niezależne składniki – SU_L(2) i SU_R(2))

ALE
$$m_q \neq 0$$

Próżnia QCD nie jest chiralnie symetryczna!

Wartość oczekiwana kondensatu kwark-antykwark jest różna od zera. $\langle q\bar{q} \rangle_{vac} \neq 0$, $O(\Lambda_{QCD})$

Symetria chiralna jest spontanicznie złamana!!!

wykład 1

Symetria chiralna

Symetria chiralna (c.d.)

ODDZIAŁYWANIA (wzbudzone stany QCD)

Małe gęstości energii:

Kwarki dostają duże masy ('constituent masses') w wyniku oddziaływań między sobą i z otaczającą próżnią. (m_u~m_d~300 MeV, m_s~500 MeV)

Złamana symetria chiralna!

Duże gęstości energii:

Kwarki (partony) stają się swobodne, ich masy ('current masses') maleją. (m_u~m_d~5 MeV, m_s~150 MeV) <qq̄>_{vac} = 0

Symetria chiralna zostaje częściowo przywrócona!

Dwa obszary stosowalności QCD

"Perturbacyjna QCD" (pQCD)

- •Małe odległości, mała stała sprzężenia α_s
- ·Dokładne rachunki mogą być robione
- Dobrze zdefiniowana dla kwarków i gluonów (nazywanych "partonami")
- •Asymptotyczna swoboda

"Nieperturbacyjna QCD" (npQCD)

- ·Duże odległości, duża stała sprzężenia α_{s}
- •Ekstremalnie trudne obliczenia
- Stosuje się do cząstek występujących w naturze ("hadrony")
- •Uwięzienie

 $Q^2 > 1 GeV$

< 1 GeV

Próżnia QCD

Ma skomplikowaną strukturę wewnętrzną – nie jest pusta
Składa się z morza kondensatów qq
Ma energię i masę
Fluktuuje wokół punktu zerowego

Niska gęstość energii: próżnia zachowuje się jak kolorowy dielektryk

Wysoka gęstość energii: kondensaty próżniowe rozpuszczają się, próżnia staje się kolorowym przewodnikiem.

Fazy zwykłej materii

Fazy materii silnie oddziaływującej

Analogiczne stany do stanów zwykłej materii!

- Jądra zachowują się jak ciecz
- Nukleony zachowują się jak gaz
- Plazma kwarkowo-gluonowa
 - "Jonizacja" nukleonów przez podgrzewanie
 - "Kompresja" nukleonów , zwiększanie gęstości

Czego się nauczyliśmy?

- QCD jest bardzo bogatą teorią
- Oddziaływania jakościowo zależą od skali
 - Duże długości fal hadrony, npQCD
 - Małe długości fal partony, pQCD
- Uwięzienie brak swobodnych partonów
 - Próba uwolnienia partonu prowadzi do jego hadronizacji
 - Teoretycznie niezrozumiała tylko modelowo
- Jak możemy badać i rozumieć QCD?

Jak i gdzie badać gorącą i gęstą materię?

Kto chce czekać?...

Gwiazdy neutronowe

Relatywistyczne zderzacze ciężkich jonów

Temperatura w czasie ewolucji Wszechświata

Odkrycie gwiazdy kwarkowej?

In 2002, NASA announced the discovery of such a star, based on results from their space telescope the Chandra X-ray Observatory. The star, called RX J185635-375, is about 360 light years from Earth. Central densities are estimated to be higher than in neutron stars.

Niestety, nowe (poprawne, pomiary promienia dały wartość 15 km, a nie jak początkowo twierdzono 4 km...!!!

Rachunki QCD na sieciach

- Przy pomocy potężnych komputerów (Teraflop)można sztucznie symulować gorącą i gęstą materię i badać jej własności.
- Rachunki na sieciach przewidują przejście fazowe do stanu złożonego ze swobodnych kwarków i gluonów.

QCD: przewidywania dla zderzeń A+A

- Gwaltowny wzrost gęstości energii, ε (T) przy temperaturze $T_{crit} = 191 \pm 8 \text{ MeV}$ $\varepsilon_{crit} = 0.7 \pm 0.2 \text{ GeV/fm}^3$
- Wzrost gęstości energii jest związany ze wzrostem liczby stopni swobody
- Materia istnieje w dwóch różnych fazach powyżej i poniżej T_{crit}, ε_{crit}.

 Zmienne termodynamiczne osiągają 80% wartości charakterystycznej dla idealnego gazu nie oddziałujących cząstek (granica Stefan-Boltzmann'a).

> Kreacja nowego stanu materii, tzw. Plazmy Kwarkowo-Gluonowej (QGP), złożonego ze swobodnych kwarków i gluonów

Zderzenia ciężkich jonów

Twarde Zderzenia

pQCD!

Materia QCD ? Materia QCD ? Kwarki i gluony są odpowiednimi stopniami swobody. Hadronów Mezony i bariony to zawsze końcowe stopnie swobody. <u>~6000</u> naładowanych hadronów

Dynamika

T ~ 2x10¹² K, p ~ 5x10²¹ atm.

ALE: Czy te niezwykle gwałtowne zderzenia nauczą nas czegoś? t ~ 10⁻²³ sek., V ~ 10⁻³⁸ ltr.

Główne cele

- QGP:
 - Czy QCD jest mniej skomplikowana przy wysokich temperaturach i gęstościach?
 - Jak wygląda diagram fazowy QCD?
 - Czy rachunki na sieciach zgadzają się z obserwacjami?
- Silnie oddziaływujące układy
 - Czy rozumiemy ewolucję systemu tworzonego w wyniku zderzenia ciężkich jonów?
 - Czy na podstawie obserwacji stanu końcowego zrozumiemy co działo się we wczesnym etapie zderzenia?

Akceleratory ciężkich jonów

Akcelerator	Kiedy	Wiązka	E _{lab} /A(maks.) [GeV]	√s _{NN} [GeV]
	<u>Ekspery</u>	<u>menty ze s</u>	<u>tałą tarczą</u>	
AGS(BNL)	1992	¹⁹⁷ Au	11.5	4.8
SPS(CERN)	1994	²⁰⁸ Pb	160.0	17.4

Eksperymenty z przeciwbieżnymi wiązkami

RHIC(BNL)2000197Au+197Au20,000200.0LHC(CERN)2009208Pb+208Pb15x1065500.0

Zderzenia ciężkich jonów przy najwyższych energiach akceleratorowych

Energie osiągane w akceleratorach ciężkich jonów (w układzie środka masy nukleon-nukleon):

Au+Au	at	BNL-	AGS
Pb+Pb	at	CERN	-SPS

√<mark>S_{NN}</mark> 2.6 - 4.8 GeV

6.3 - 17.3 GeV

1992-1999 1994-2004

Au+Au at BNL-RHIC Pb+Pb at CERN-LHC

19.6 - 200.0 GeV 2000 → **5500.0 GeV** 2009

Relativistic Heavy Ion Collider – BNL,USA RHIC

RHIC - Podstawowe parametry

Układ: Dwa nadprzewodzące pierścienie +istniejący kompleks (AGS) do wstępnej akceleracji.

Wiązki	Au	Þ
Energia/wiązkę	10 -100 GeV/A	max. 250 GeV
Natężenie wiązki	10 ⁹	1011
Liczba pęczków	57	114
Świetlność[cm ⁻² s ⁻¹]	2x10 ²⁶	10 ³²
Czas przecięcia pęcz	ków 1	06 ns
Magnesy nadprzewod (D-4T, Q-72T/m)	zące 1	740
Obwód	3.8	8 km
Ilość zużytego Au Koszt	10 ⁻⁶ g w ciągu 20 10) lat)³ M\$

Eksperymenty: RHIC @ BNL

Ludzie

>1000 osób z całego świata uczestniczy w eksperymentach RHIC

http://www.****.bnl.gov

RHIC Eksperyment: STAR Solenoidal Tracker At RHIC

SVT-Silicon Vertex Tracker, $|\eta| < 1$ Cylindryczna TPC (L=4m, D=2m), $|\eta| < 1.7$ Przednia TPC 2.5 < $|\eta| < 4$ E-M Kalorymetr (w budowie) TOF

- Duża akceptancja dla hadronów (2000 cząstek/przypadek)
- Pomiary pędu, ładunku, masy
- Precyzyjny opis stanu końcowego (inkluzywny i przypadek po przypadku)

RHIC Eksperyment: PHENIX Pioneering High Energy Nuclear Interaction eXperiment

3 magnesy: centralny (e,h) przedni & tylny (μ) 2 centralne spektrometry |η| < 0.35 Si MVD, DC, PC, TEC, ToF, RICH, EMC 2 spectrometry mionowe 1.1 < |η| < 2.4</pre>

- Pomiary fotonów, leptonów i hadronów
- 'Twarde' sygnały: hadrony o dużych p_T i π^o , e & μ (charm), bezpośrednie γ
- Największy i najbardziej skomplikowany eksperyment w RHIC

RHIC Eksperyment: BRAHMS Broad RAnge Hadron Magnetic Spectrometers

RHIC Eksperyment: PHOBOS A moon of MARS (a Modular Array for Rhic Spectra)

- Daje najlepszą ogólną charakterystykę przypadku
- Pomiar hadronów o bardzo małych pędach poprzecznych
- Dostarcza szybko wyniki

RHIC Experiment: PHOBOS

LHC – Large Hadron Collider Wielki Zderzacz Hadronów

Gigantyczny akcelerator cząstek w Europejskim Ośrodku Fizyki Cząstek – CERN w pobliżu Genewy

Wielki Zderzacz Hadronów: Usytuowanie geograficzne

Akcelerator umieszczony jest w tunelu o długości 27 km, znajdującym się ~100 m pod ziemią między Genewą i górami Jura.

CERN: Kompleks akceleratorów

Wiązki protonów są stopniowo przyspieszane, aż osiągną w LHC prędkość praktycznie równą prędkości światła.

Protony są przyspieszane w silnych polach elektrycznych.

Magnesy ogniskujące i korekcyjne ogniskują wiązki cząstek, a magnesy dipolowe zakrzywiają tor cząstek.

LHC – Podstawowe parametry Large Hadron Collider, CERN

Układ: Dwa nadprzewodzące pierścienie +istniejący kompleks (PS/SPS) do wstępnej akceleracji.

Wiązki	РЬ ———	→ p
Energia/wiązkę	2.76 TeV/A	7 TeV
Natężenie pęczków	7 ×10 ⁷	1011
Liczba pęczków	592	2808
Świetlność [cm ⁻² s ⁻¹]	1×10 ²⁷	10 ³⁴
Czas przecięcia pęczków	v 100 ns	25 ns
Magnesy nadprzewodząc (D-8 3T Q-223T/m)	ce 233	8
Obwód	26.7	' km
Koszt	3×10	³ M CHF

Eksperymenty LHC

.HC-Eksperyment	Uczestnicy
ALICE	~1300
ATLAS	~2500
CMS(13kT) + TOTE	M ~2500
LHC-B	~ 600

Ok. 7000 uczestników

A Thoroidal LHC ApparatuS

Największy eksperyment jaki kiedykolwiek zbudowano dla potrzeb fizyki cząstek (dł. 44m, wys. 22m,waga 7 tys. ton): 6-cio piętrowa kamienica opleciona 3 tys. km kabli.

Instalacja kalorymetru, listopad 2005

Symulacja: rozpad cząstki Higgsa

Symulacja: rozpad Czarnej Dziury

Poszukiwanie cząstek Higgsa i innych nowych zjawisk, Pb+Pb

Cel:

Schemat detektora CMS

Symulacja zderzenia z rozpadem cząstki Higgsa

Cel: Poszukiwanie cząstek Higgsa i innych nowych zjawisk, Pb+Pb

Compact Muon Solenoid Najcięższy detektor – 12,5 tys. ton (ma tyle żelaza co wieża Eiffla) 2x mniejszy od ATLASa, ale 2x cięższy

A Large Ion Colider Experiment ALICE jest eksperymentem dedykowanym do badania zderzeń ołów-ołów. Wiązki jonów ołowiu będą także przyspieszane w LHC, w późniejszym etapie działania akceleratora, do energii 2,7 TeV na nukleon.

W wyniku zderzeń jąder ołowiu może powstać nawet 20 tys. cząstek.

Detektor ALICE na początku 2008 r.

Cel:

Badanie materii jądrowej ogrzanej do temperatury 100 000 razy wyższej niż temperatura wnętrza Słońca → odtworzenie warunków panujących we Wszechświecie tuż po (10⁻⁶ sek) Wielkim Wybuchu. Poszukiwanie stanu materii złożonego ze swobodnych kwarków i gluonów.

Zderzenia pp przy energiach SPS-CERN

wykład 1

Zderzenia Au+Au przy energiach RHIC

Zderzenia Pb+Pb przy energiach LHC

