- Neutrina atmosferyczne
 - strumienie neutrin mionowych i elektronowych
 - deficyt neutrin mionowych
- Pomiary w eksperymencie SuperKamiokande
- Akceleratorowe wiązki neutrin
- Neutrinowe eksperymenty akceleratorowe
- Oscylacje neutrin

Neutrina atmosferyczne

- Wysokoenergetyczne cząstki pierwotnego promieniowania kosmicznego, o energiach dochodzących do 10²⁰ eV, oddziałują z jądrami górnej warstwy atmosfery ziemskiej i produkują cząstki wtórne, tworzące wielkie pęki atmosferyczne (wtórne promieniowanie kosmiczne)
- Skład pierwotnych promieni kosmicznych (dla cz. naładowanych) : protony (jądra wodoru) ~86%, jądra helu ~11%, jądra cięższych pierwiastków ~ 1%, elektrony ~2%)

Promienie kosmiczne oddziałują głównie hadronowo \rightarrow obfita produkcja pionów i kaonów

 $p + N \rightarrow N + N + n\pi + mK + ...$

- Na powierzchnię Ziemi docierają :
 - $\begin{array}{c|c} \text{ miony } \mu^{\pm} & \sim 70\% \\ \text{ elektrony } e^{\pm} & \sim 25\% \\ \text{ protony, piony } \pi^{\pm} \sim 3\% \end{array} \end{array} \begin{array}{c} \text{iqcznie} \\ \text{około} \\ 180 \cdot \text{m}^{-2} \cdot \text{s}^{-1} \end{array}$

 - neutrina z rozpadów pionów i kaonów

Neutrina atmosferyczne

• au_{π} = 26 ns ightarrow większość π^{\pm} rozpadnie się w locie (dokładnie te o energii E $_{\pi}$ << 100 GeV)

- $\tau_{\mu} = 2.2 \ \mu s \rightarrow miony o energii E_{\mu} < 2 GeV także rozpadną się w locie, miony o energii powyżej 4 5 GeV docierają do powierzchni / przenikają do głębi Ziemi (tło dla eksp.badających neutrina słoneczne i atmosferyczne)$
- Przy jednakowej liczbie π^+ i π^- otrzymujemy 2 ν_{μ} , 2 $\overline{\nu}_{\mu}$, 1 ν_e , 1 $\overline{\nu}_e$

$$\frac{N(\mathbf{v}_{\mu} + \overline{\mathbf{v}}_{\mu})}{N(\mathbf{v}_{e} + \overline{\mathbf{v}}_{e})} \approx 2$$

dla $E_{\mu} \le 1 \text{ GeV}$

Przewidywania:

Przy małych energiach produkuje się ~ dwukrotnie więcej neutrin i antyneutrin mionowych niż

Dokładne rachunki uwzględniaja :

produkcję i rozpady cząstek dziwnych (kaonów)

 dylatację czasu życia μ[±] dla wyższych energii (mniej mionów rozpada się w locie w atmosferze)

stosunek strumieni neutrin rośnie wraz z energią

- Strumienie neutrin mionowych i elektronowych obliczane w oparciu o zmierzone rozkłady cząstek pierwotnego promieniowania kosmicznego (p, He, ...), znajomość przekrojów czynnych na ich oddziaływanie w atmosferze, ...
- Duże niepewności w pomiarach strumieni pierwotnych promieni kosmicznych
 - \rightarrow niepewności obliczonych bezwzględnych strumieni neutrin (20 30)%
- Redukcja niepewności do 5% przy obliczeniach stosunku strumieni neutrin

W kilku eksperymentach badających neutrina atmosferyczne wyznaczono :

$$R \equiv \frac{(N_{\mu} / N_{e})_{dane}}{(N_{\mu} / N_{e})_{oblicz}}$$

SuperKamiokande (1998) –	pierwsza wiarygodna ewidencja oscylacji neutrin !
R = 0.638 ± 0.017 ± 0.050	dla Ev < 1 GeV
R = 0.675 ± 0.034 ± 0.080	dla Ev > 1 GeV
• 7 miorzono wortości D w	nnikaja z doficutu noutrin mionouuch

- Zmierzone wartości R wynikają z deficytu neutrin mionowych przechodzących przez Ziemię
- Są zgodne z założeniem oscylacji neutrin $\nu_{\mu} \rightarrow \nu_{\tau}$

Inne eksperymenty również wskazują na deficyt neutrin mionowych i mierzą R < 1

IMB Kamiokande Soudan $\begin{array}{l} 0.54 \pm 0.05 \pm 0.07 \\ 0.60 \pm 0.06 \\ 0.68 \pm 0.11 \pm 0.06 \end{array}$

SuperKamiokande – pomiary neutrin atmosferycznych

- Duże podziemne detektory o masie rzędu kiloton (Kamioka, IMB) zbudowano w celu poszukiwań rozpadu protonu, przewidzianego w Teoriach Wielkiej Unifikacji (GUT)
- Rozpadu protonu nie znaleziono, ale zdarzenia z neutrinami atmosferycznymi, traktowane jako tło w tym pomiarze, przyniosły b. ciekawe wyniki :
 - pierwsze pomiary neutrin z wybuchu gwiazdy supernowej 1987A
 - pierwsza wiarygodna ewidencja na oscylacje neutrin $\nu_{\mu}\leftrightarrow\nu_{\tau}$ (SuperKamiokande)

Pomiar mionowych i elektronowych neutrin atmosferycznych w eksp. SuperKamiokande w procesach zachodzących poprzez prądy naładowane :

$$\nu_{\mu} + \textbf{N} \rightarrow \mu + \textbf{X} \qquad \qquad \nu_{e} + \textbf{N} \rightarrow \textbf{e} + \textbf{X}$$

możliwość rejestracji zdarzeń zachodzących przez prądy neutralne :

 $v + N \rightarrow v + \pi^0 + N$, $\pi^0 \rightarrow 2\gamma$, konwersja γ na relatywistyczne pary e⁺e⁻

- typowe energie neutrin atmosferycznych (ν_μ, ν_μ, ν_e, ν_e) Ev ~ 1 GeV
 (o wiele większe niż słonecznych ν_e, Ev < 20 MeV, identyfikowanych w SK w procesach rozpraszania na elektronach atomowych ν_e + e⁻ → ν_e + e⁻)
- detekcja elektronów i mionów w wodnym liczniku Czerenkowa (50 kton H₂O) (woda stanowi zarówno tarczę jak i detektor oddz. neutrinowych)
- pomiar rozkładów mionów i elektronów w funkcji kąta zenitalnego

- Neutrina przychodzące z góry przebiegają ok. 20 km
- Neutrina docierające z dołu (z drugiej strony Ziemi) pokonują dystans ok. 12 800 km

ATMOSFERA DETEKTOR ZIEMIA NEUTRINO Z DOŁU

- Izotropowy strumień pierwotnego promieniowania kosmicznego
- Neutrina bardzo słabo oddziałują z atmosferą i z Ziemią

Oczekujemy takiego samego strumienia neutrin atmosferycznych z góry i z dołu

Up/Down Symmetric Flux (for E_V > few GeV)

Mierzymy kat zenitalny (θ) mionu / elektronu

przy wysokich energiach jego rozkład jest bliski rozkładowi kąta zenitalnego neutrin

ν_{μ} + n \rightarrow μ^{-} + p

 μ – stożek promieniowania Czerenkowa o ostrych krawędziach e – rozprasza się ośrodku, zmiana kierunku ruchu, "rozmazany" stożek świetlny

Rozkład kątowy neutrina jest bliski rozkładowi kątowemu e(μ)

Przy wysokich energiach rozmycie kątowe ν – e(μ) można pominąć

Topologie przypadków z oddziaływań neutrin

PC - Partially Contained

Elektron / niskoenergetyczny mion wyprodukowany w detektorze zatrzymuje się w nim (identyfikacja e / μ) Wysokoenergetyczny mion wyprodukowany w detektorze ucieka z niego

<u>Upward</u>

Miony wyprodukowane w skałach poniżej detektora przechodzą przez detektor lub zatrzymują się w nim

- Te klasy przypadków mają różne widmo energii, analizowane są odmiennymi technikami i mają różne niepewności systematyczne.
- Należy je oddzielić od tła mionów z wtórnych promieni kosmicznych (3 Hz).

FC - Fully Contained

10

Rozkłady liczby naładowanych leptonów produkowanych w eksp. SuperKamiokande w oddziaływaniach neutrin atmosferycznych, w funkcji kąta zenitalnego (długości drogi neutrina w materii)

• przewidywania (bez oscylacji) dla v_e zgadzają się z danymi : tyle samo neutrin rejestrowanych jest z "dołu" i z "góry", z grubsza poprawny opis strumienia neutrin

• silna ewidencja na znikanie ν_{μ} , w szczególności $~\nu_{\mu}$ przebiegających dłuższą drogę w Ziemi (kierunek z dołu)

 \bullet poprawny opis danych przy założeniu oscylacji $\nu_{\mu} \rightarrow \nu_{\tau}$

Rozkłady liczby naładowanych elektronów i mionów w funkcji kąta zenitalnego (długości drogi neutrina w materii)

 deficyt neutrin mionowych jest obserwowany w różnych próbkach danych (asymetria góra – dół)

- składowa v_e nie podlega oscylacjom, zdarzenia elektronowe i mionowe opisane poprawnie przy założeniu oscylacji v_µ → v_τ we wnętrzu Ziemi
- v_{τ} nie jest rejestrowane, ponieważ zazwyczaj jest poniżej progu na oddz. CC

(3.5 GeV)

Eksperyment SuperKamiokande zebrał największe statystyki danych dot. v atmosferycznych i dostarczył wiarygodnej ewidencji na oscylacje

neutrin $\nu_{\mu}\!\rightarrow\nu_{\tau}$

Wyznaczył stosunek strumieni neutrin mionowych i elektronowych

$$R_{Sub} = \frac{(\mu/e)_{data}}{(\mu/e)_{MC}} = 0.638 \pm 0.016 \pm 0.050$$

$$R_{Multi} = \frac{(\mu / e)_{data}}{(\mu / e)_{MC}} = 0.658^{+0.030}_{-0.028} \pm 0.078$$

W 2002 wyniki SuperKamiokande dot. oscylacji neutrin $v_{\mu} \leftrightarrow v_{\tau}$ zostały potwierdzone przez eksperyment akceleratorowy z długą bazą pomiarową K2K

2002 – nagroda Nobla dla M. Koshiby koordynatora eksp. SuperKamiokande

asymetria góra – dół "znikają" ν_{μ} przechodzące przez Ziemię deficyt ν_{μ} wyjaśniają oscylacje $\nu_{\mu} \rightarrow \nu_{\tau}$ Neutrinowe eksperymenty akceleratorowe

- W ostatniej dekadzie badania neutrin atmosferycznych i słonecznych udowodniły, że neutrina podlegają zjawisku oscylacji → neutrina mają niezerowe masy
- Precyzyjne pomiary oscylacji neutrin wymagają pełnej kontroli wiązek neutrin i (długości) bazy pomiarowej
 - Idea pomiaru w eksp. akceleratorowych :
 - intensywna wiązka neutrin / antyneutrin
 - dwa detektory, jeden blisko układu wytwarzającego wiązkę drugi w odległości kilku setek km
 - pomiar widma energetycznego v w bliskim detektorze (brak efektów oscylacji) i w detektorze dalekim, w którym efekty oscylacji neutrin powinny się ujawnić

- Odpowiedni dobór odległosci i energii wiązki → obserwacja efektów oscylacji
- Kontrola niepewności systematycznych w eksp. akceleratorowych

- zderzenia wysokoenergetycznych protonów ze stacjonarną tarczą \rightarrow produkcja hadronów
- selekcja naładowanych pionów i kaonów tego samego znaku w odp. uformowanym polu magnetycznym i skierowanie ich do tunelu rozpadowego
- słabe rozpady π i K są źródłem ν ($\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ BR ~100%, K⁺ $\rightarrow \mu^+ + \nu_{\mu}$ BR ~ 64%)
- absorpcja mionów w grubej warstwie żelaza i osłonie ziemnej

"skolimowane" wiązki neutrin :

"wąskopasmowa" : ograniczony zakres Ev, mniejszy strumień "szerokopasmowa": szerszy zakres Ev, większy strumień

- Widmo energetyczne neutrin jest wyznaczone przez kinematykę rozpadów π i K oraz parametry układu magnetycznego selekcjonującego cząstki naładowane
- Produkcja π / K na stacjonarnej tarczy nie jest dobrze modelowana przez programy MC \rightarrow znaczące niepewności w widmie energetycznym produkowanych neutrin

Oscylacje neutrin

- Oscylacje neutrin (przemiany jednego typu neutrin w inne) wyjaśniają wyniki eksperymentów badających neutrina atmosferyczne i słoneczne
- Oscylacje najłatwiej zrozumieć przy założeniu, że neutrina mają niezerowe masy

Mieszanie stanów :

- \bullet neutrina ν_{e}, ν_{μ} i ν_{τ} produkują się i oddziałują jako stany własne oddziaływań słabych
- stany neutrinowe oddziałujące słabo : v_e , v_μ i v_τ są kombinacjami liniowymi stanów neutrinowych o dobrze określonych masach v_1 , v_2 i v_3
- ullet swobodne stany własne masy v_i propagują się w czasoprzestrzeni jak fale płaskie
- \bullet jeżeli stany $\nu_i \,$ mają różne masy prowadzi to do oscylacji stanów zapachowych

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Macierz PMNS (Pontecorvo – Maki – Nakagawa – Sakata)

U(3 x 3) – unitarna macierz mieszania dla neutrin jest odpowiednikem macierzy CKM dla kwarków

Mieszanie stanów :

stany oddziałujące słabo ν_{α} i ν_{β} są kombinacjami liniowymi stanów neutrinowych ν_1 i ν_2 o dobrze określonych masach m_1 i m_2

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \qquad \theta - kat mieszania$$

Jeżeli m₁ ≠ m₂ → stany v₁ i v₂ propagują się z różnymi prędkościami względna faza stanów v₁ i v₂ zmienia się w czasie w zależności od pokonanej odległości zmiana zapachu neutrin v_α ↔ v_β

- $\mathbf{v}_{\alpha} = \cos(\theta)\mathbf{v}_{1} + \sin(\theta)\mathbf{v}_{2}$
- $\mathbf{v}_{\beta} = -\sin(\theta)\mathbf{v}_1 + \cos(\theta)\mathbf{v}_2$

Propagacja stanu o masie m_k , energii E_k i pędzie p_k :

 $v_{\mathbf{k}}(t, \mathbf{x}) = v_{\mathbf{k}}(0, 0) \cdot \exp(\mathbf{i} \phi_{\mathbf{k}}(t, \mathbf{x})), \text{ faza } \phi_{\mathbf{k}} = E_{\mathbf{k}}t - \mathbf{p}_{\mathbf{k}} \cdot \mathbf{x}, \text{ } \mathbf{k} = 1, 2 \quad h = c = 1$

Zakładamy, że w stanie początkowym w chwili t = 0 i x = 0 mamy jedynie neutrina o zapachu α

 $v_{\alpha}(\mathbf{0}) = 1 \qquad v_{\beta}(\mathbf{0}) = 0$ $v_{1}(0) = v_{\alpha}(0)\cos(\theta)$ $v_{2}(0) = v_{\alpha}(0)\sin(\theta)$

W czasie propagacji wkład składowych ν_1 i ν_2 do stanu o początkowym zapachu α zmienia się

 $v_{\alpha}(t,x) = \cos\theta v_1(t,x) + \sin\theta v_2(t,x)$

Prawdopodobieństwo, że po czasie t cząstka o początkowym zapachu α nadal pozostanie w tym samym stanie zapachowym

$$P_{\alpha \to \alpha} = \left| \frac{V_{\alpha}(t,x)}{V_{\alpha}(0,0)} \right|^{2} = \left| \cos^{2} \theta \ e^{i\varphi_{1}(t,x)} + \sin^{2} \theta \ e^{i\varphi_{2}(t,x)} \right|^{2} = 1 - \sin^{2} 2\theta \ \sin^{2}(\frac{\varphi_{1} - \varphi_{2}}{2})$$

$$P\left(V_{\alpha} \to V_{\alpha}\right) = 1 - \sin^{2} 2\theta \ \sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{v}}\right) \qquad \Delta m^{2} = m_{1}^{2} - m_{2}^{2} [\ eV^{2}], L \ [km] = E_{v} [\ GeV]$$

Jeżeli masy stanów v_1 i v_2 są takie same to stany te pozostaną fazie, $\phi_1 = \phi_2$, i cząstka o początkowym zapachu α nadal pozostanie w tym samym stanie zapachowym

Oscylacje neutrin dla 2 zapachów

Prawdopodobieństwo, że nastąpi transformacja neutrina o początkowym zapachu α na neutrino o zapachu β : P($\nu \rightarrow \nu_{a}$) = 1 – P($\nu \rightarrow \nu_{a}$) \longrightarrow $P(\nu \rightarrow \nu_{a}) - \sin^{2}2\theta \sin^{2}\left(\frac{1.27\Delta m^{2}L}{1.27\Delta m^{2}L}\right)$

$$(v_{\alpha} \rightarrow v_{\beta}) = 1 - \mathbf{P}(v_{\alpha} \rightarrow v_{\alpha}) \longrightarrow P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m L}{E_v}\right)$$

Prawdopodobieństwo przejścia $\nu_{\alpha} \rightarrow \nu_{\beta}$ jest proporcjonalne do sin2 θ , zależy ponadto od energii neutrina E_{ν} , od odległości L m-dzy punktem jego produkcji i detekcji oraz od różnicy kwadratów mas neutrin $\Delta m^2 = m_1^2 - m_2^2$

Zapach neutrina jest oscylującą funkcją czasu i odległości pokonanej przez wiązkę neutrin

Oscylacje są możliwe do wykrycia, jeżeli czynnik 1.27 $\Delta m^2 L / E_V$ jest rzędu jedności - jeżeli różnice mas są b. małe pomiary trzeba wykonywać na b. dużych odległosciach

Parametry oscylacji : Δm^2 i kąt mieszania θ Warunki eksperymentalne są określone przez energię neutrina oraz odległość L ★ Hence the two-flavour oscillation probability is:

$$P(v_e \rightarrow v_\mu) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$
 with $\Delta m_{21}^2 = m_2^2 - m_1^2$

★ The corresponding two-flavour survival probability is:

$$P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

•e.g.
$$\Delta m^2 = 0.003 \,\mathrm{eV}^2$$
, $\sin^2 2\theta = 0.8$, $E_v = 1 \,\mathrm{GeV}$
•wavelength
 $P(v_e \to v_e)$
 $p_{(v_e \to v_e)}$
 $p_{(v_e \to$

Sensitivity to oscillations

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2 2\theta \sin^2 ($$

sin ²	$(1.27\Delta m^2 L)$
5111	E_{ν}

	E _v (MeV)	L (m)	$\Delta m^2 (eV^2)$
Supernovae	<100	>1019	10-19 - 10-20
Solar	<14	1011	10-10
Atmospheric	>100	104 -107	10-4
Reactor	<10	<10 ⁶	10 ⁻⁵
Accelerator with	>100	10 ³	10-1
short baseline			
Accelerator with	>100	<10 ⁶	10-3
long baseline			

Wykład Kiełczewska & Rondio

Interpretacja wyników dot. neutrin atmosferycznych w eksperymencie SuperKamiokande

Prawdopodobieństo przejścia P($\nu_{\mu} \rightarrow \nu_{\mu})~~\text{w}$ funkcji L/E oraz energii neutrin

Oscylacje $\nu_{\mu} \leftrightarrow \nu_{\tau}$

Super-Kamiokande

Wyniki

W rozkładzie $rac{N_{obs}}{N_{exp}} inom{L}{E}$ widoczne jest minimum przy $rac{L}{E} \sim 500 rac{km}{GeV}$

⇒ "regeneracja" neutrin dla większych $\frac{L}{E}$

Wyniki zgodne z hipotezą oscylacji

(czarna linia)

Wykluczają inne proponowane modele na poziomie > 3σ (np. rozpad neutrin - niebieska linia)

Wykład A. F. Żarnecki

Eksperymenty typu "disappearance"

Mierzą znikanie neutrin o początkowym zapachu $P(v_v \rightarrow v_\alpha) \leq 1$

Eksperymenty typy "appearance"

Mierzą pojawianie się neutrin o zapachach jakich nie było wiązce początkowej P($\nu_{\alpha} \to \nu_{\beta}) \geqq 0$

★ Five main Long-baseline neutrino oscillation experiments

Experiment	Operational	$\textbf{Peak } \textbf{E}_{\nu}$	Baseline	Detector
K2K	1999-2004	1 GeV	250 km	Water Č
NuMI/MINOS	2005-2010(?)	3 GeV	735 km	Iron/Scint
CNGS/Opera	2008-	17 GeV	735 km	Emulsion
T2K	2010-	0.7 GeV	295 km	Water Č
NOvA (?)	2012(?)-	1.8 GeV	810 km	Liq. Scint.

Main Experimental Goals:

- ★ K2K : confirm atmospheric neutrino oscillations
- **★** MINOS : precise measurement of $|\Delta m_{32}|^2$ (and θ_{23}) + shot at θ_{13}
- **\star** Opera : observe tau appearance in $v_{\mu} \leftrightarrow v_{\tau}$ oscillations
- **★** T2K : observe $v_{\mu} \leftrightarrow v_{e}$ oscillations and measurement of θ_{13}
- **★** NOvA : $V_{\mu} \leftrightarrow V_{e}$ at a longer baseline (mass hierarchy)

Mieszanie neutrin dla 3 zapachów

ICHEP 2008

Parameter	$\delta m^2/10^{-5} \ \mathrm{eV}^2$	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 \theta_{23}$	$\Delta m^2/10^{-3}~{\rm eV}^2$
Best fit	7.67	0.312	0.016	0.466	2.39
1σ range	7.48 - 7.83	0.294 - 0.331	0.006 - 0.026	0.408 - 0.539	2.31 - 2.50
2σ range	7.31 - 8.01	0.278 - 0.352	< 0.036	0.366 - 0.602	2.19 - 2.66
3σ range	7.14 - 8.19	0.263 - 0.375	< 0.046	0.331 - 0.644	2.06 - 2.81

The latest global 3v-oscillation analysis (Fogli et al., arXiv:0805.2517):

$$\delta m^{2} \equiv m_{2}^{2} - m_{1}^{2}$$
$$\Delta m^{2} \equiv /m_{3}^{2} - (m_{1}^{2} + m_{2}^{2})/2 \mid$$

- (a) Angle theta_23 is large and close to $\pi/4$, suggestive of something?
- (b) Angle theta_12 is large and seems to lie between $\pi/6$ and 35.3°.
- (c) Angle theta_13 is not large and its upper bound is about 10°.

Dodatkowe transparencje

Neutrina słoneczne

SuperKamiokande (neutrina borowe, $E_V > 5 \text{ MeV}$)

1496 dni (~ 4 lata) **22 400 przypadków** ~ 15 przyp. / dzień

SNO (neutrina borowe)

faza | tylko D_2O

306 dni	przyp. CC	1967
	ES	263
	NC	576
faza II	D ₂ O + NaCl	
254 dni	przyp. CC	1340
	ES	170
	NC	1344

~ 6 przyp. / dzień ~ 0.9 ~ 1.9	~ 9 przyp. / dzień
~ 5 przyp. / dzień ~ 0.7 ~5	~ 11 przyp. / dzień