Fizyka neutrin

- Źródła neutrin
- Neutrina reliktowe
- Geoneutrina
- Neutrina z wybuchu Supernowych
- Neutrina słoneczne
 - reakcje termojądrowe źródłem neutrin słonecznych
 - widmo energetyczne
 - metody detekcji
- Deficyt neutrin słonecznych
 - eksperymenty radiochemiczne (Homestake, GALLEX/GNO)
 - eksperymenty z licznikami Czerenkowa
 - (Kamiokande, SuperKamiokande, SNO)

Model Standardowy:

3 rodziny kwarków i leptonów o spinie 1/2

Neutralne leptony – neutrina i antyneutrina :

- oddziałują tylko słabo
- neutrina i antyneutrina jedyne fundamentalne fermiony o masie równej zero
- w Naturze istnieją tylko lewoskrętne neutrina oraz prawoskrętne anyneutrina
- oddzielne zachowanie 3 liczb leptonowych
 L_e, L_u, L_τ

Rodziny leptonowe : naładowany (e,μ,τ) i neutralny lepton (v_e, v_μ, v_τ)

Dane ze zderzacza e⁺e⁻ LEP (pomiar szerokości rezonansu Z⁰) są zgodne z istnieniem tylko 3 zapachów neutrin (ν_e , ν_μ , ν_τ)

Silna ewidencja doświadczalna na oscylacje neutrin :

eksp. ze słonecznymi, atmosferycznymi, reaktorowymi i akceleratorowymi neutrinami

→ przynajmniej 2 typy neutrin mają masę i 3 zapachy leptonowe się mieszają

→ Model Standardowy wymaga modyfikacji

- neutrina ze źródeł naturalnych :
 - słoneczne
 - atmosferyczne
 - z wybuchu Supernowych
 - reliktowe (pozostałość po Wielkim Wybuchu)
 - z naturalnej promieniotwórczości Ziemi
- wiązki neutrin z akceleratorów i reaktorów jądrowych

Naturalne źródła neutrin

Strumienie neutrin ze źródeł naturalnych w funkcji energii neutrin

Neutrina reliktowe – pozostałość po Wielkim Wybuchu

• Produkcja neutrin v_e , v_{μ} , v_{τ} we wczesnym Wszechświecie w słabym procesie :

 $e^+ + e^- \leftrightarrow v + \bar{v}$

b. mały przekrój czynny na ten proces powoduje, że czas m-dzy zderzeniami dla powyższej reakcji staje się dłuższy niż czas ekspansji neutrin

- Neutrina wychodzą ze stanu równowagi termicznej z pozostałą materią i promieniowaniem przy kT < 3 MeV co odp. czasowi od Wielkiego Wybuchu t > 10⁻² s (T - temperatura, k - stała Boltzmanna)
- \rightarrow odprzęgnięcie neutrin od materii i promieniowania oraz niezależna ekspansja
- Średnia gęstość liczby neutrin i antyneutrin (dla 3 zapachów) ≈ 340 cm⁻³
- Obecna temperatura neutrin reliktowych ~ 1.95 K
- \rightarrow Bardzo niskie energie energie rzędu meV \rightarrow bardzo trudne do zaobserwowania

Kosmiczne tło neutrinowe dotychczas niemierzalne

- Neutrina pochodzące z rozszczepienia promieniotórczych izotopów uranu (U), toru (Th), potasu (K), radu (Ra) ... we wnętrzu naszej planety
- Rozpady β są źródłem antyneutrin elektronowych, strumień geoneutrin $\phi \sim 6 \cdot 10^6$ cm⁻²s⁻¹

Warstwowa struktura gwiazdy

Neutrina z wybuchu Supernowych

Ewolucja gwiazd o masie > 10 mas Słońca

Fuzja lżejszych pierwiastków w cięższe aż do osiągnięcia grupy żelaza (⁵⁶Fe ma max. energię wiązania na nukleon)

Gdy masa żelaznego jądra stanowi $\approx 1.5 M_{SUN}$ ciśnienie grawitacyjne > ciśn. zdegenerowanego gazu elektronowego w żelaznym jądrze \rightarrow grawitacyjny kolaps jądra gwiazdy gęstość jądra rośnie do gęstości materii jądrowej $\rho \approx 2 \cdot 10^{14} \text{ gcm}^{-3} \rightarrow \text{ powstrzymanie implozji}$

Podczas zapadania grawitacyjnego:- jądra Fe rozpadają się na neutrony i protony- zachodzi proces neutronizacjie^- + p \rightarrow n + v_e (wychwyt e^- przez protony)

Powstaje gwiazda neutronowa

(jakby gigantyczne jądro atomowe składające się głównie z neutronów)

- Emisja neutrin elektronowych z procesu neutronizacji w ciągu milisekundy
- Po uzyskaniu gęstości materii jądrowej uwięzienie neutrin w jądrze gwiazdy (dla E_v ~ 10 MeV średnia droga swobodna neutrin λ ~ 0.1 km) 7

Wybuch supernowej

Zewnętrzne warstwy jądra gwiazdy i jej otoczka opadają na zdegenerowany rdzeń i odbijają się od niego → powstaje fala uderzeniowa rozchodząca się od środka na zewnątrz, stymulująca wybuch supernowej → uwolnienie uwięzionych neutrin

Poza neutronizacją produkcja (anty)neutrin (wszystkie zapachy) zachodzi także w procesach $e^+e^- \rightarrow Z^0 \rightarrow \nu_e \overline{\nu}_e$, $\nu_\mu \overline{\nu}_\mu$, $\nu_\tau \overline{\nu}_\tau$,

gdzie pary e⁺e⁻ są generowane przez fotony (pary $v\overline{v}$, e⁺e⁻ i γ w równowadze termicznej)

Podczas ochładzania się gwiazdy neutronowej

ok. 99% uwolnionej energii grawitacyjnej (E_{graw} ≈ 17%M_{SUN}c²) jest emitowane w postaci kilku-sekundowego rozbłysku neutrinowego (~10⁵⁸ neutrin)

- 1% energia kinetyczna eksplozji
- 0.01% fotony rozświetlające całą galaktykę

Świetlność neutrin L_v \approx 3 · 10⁵³ erg/ 3 sec \approx 3 · 10¹⁹ L_{SUN} , L_{SUN} – świetlność Słońca

Neutrina z wybuchu Supernowych

Jednoczesna obserwacja sygnału neutrinowego z Supernowej 1987A (w ramach niepewności eksp.)

ObrazniebawWielkimObłokuMagellanaprzed wybuchem2 dni po wybuchu

Główny kanał detekcji $\overline{\nu}_e + p \rightarrow n + e^+$

Energia elektronów zarejestrowanych przez wodne liczniki Czerenkowa w eksp. Kamiokande (Japonia) oraz IMB (USA) i teleskop scyntylacyjny eksp. Baksan (Rosja) \rightarrow widmo energii neutrin, < E_y > ~(10-15) MeV

- Ograniczenia na masę $\overline{\nu}_{\rm e}$
- Informacje dot. sprzężeń neutrin w Modelu Standardowym

- Reakcje w jakich powstają neutrina słoneczne, zakres energii, detekcja
- Pomiary strumienia neutrin elektronowych docierających na Ziemię ze Słońca
 - \rightarrow deficyt neutrin słonecznych \rightarrow oscylacje neutrin rozwiązaniem problemu
- Oscylacje neutrin ↔ neutrina mają masę

Reakcje termojądrowe zachodzące we wnętrzu Słońca : (procesy spalania wodoru i przekształcania go w hel)

- są źródłem energii słonecznej
- są intensywnym źródłem neutrin elektronowych

cykl proton-proton (pp):

Strumień neutrin słonecznych $\phi(v) = 7 \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

99 % energii słonecznej pochodzi ze spalania wodoru (cykl pp)

$$3. \quad {}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2p$$

Aby otrzymać jedno jądro ⁴He z reakcji 3 : 2 · reakcja 1 + 2 · reakcja 2 + reakcja 3

 $4p \rightarrow ^{4}He + 2e^{+} + 2v_{e} + 26.2 \text{ MeV} 90\% \text{ strumienia neutrin słonecznych}$ $\downarrow energia \text{ produkowana w procesach fuzji}$ $+ 2e^{+} + 2v_{e} + 26.2 \text{ MeV}$

Transformacja 4 jąder wodoru w jądro helu ⁴He dostarcza energii 26.2 MeV 11 promieniowanej przez Słońce Cykl ppll : reakcje 1 – 3

reakcje syntezy ³He i ⁴He oraz przemiany ⁷Be prowadzą do emisji dodatkowych niskoenergetycznych neutrin (Ev < 1 MeV)

Cykl pplll : reakcje 1 – 3

reakcje syntezy ³He i ⁴He oraz przemiany ⁷Be i ⁸B prowadzą do emisji wysokoenergetycznych neutrin (Ev < 15 MeV),

które mogą być mierzone w detektorach cząstek elementarnych

Hydrogen burning: Proton-Proton Chains

Rejestracja elektronowych neutrin słonecznych – b. ważna dla potwierdzenia hipotezy reakcji termojądrowych w Słońcu¹⁴ Strumień v_e [cm⁻² · s⁻¹]

Widmo energetyczne neutrin słonecznych

w funkcji Ev, obliczone w Standardowym Modelu Słońca (Standard Solar Model, SSM)

- Szybkość reakcji wywoływanych przez v_e , będących podstawą ich detekcji, zależy od strumienia neutrin, energii progowej i przekroju czynnego nad progiem
- $\sigma \sim E_{\nu^3} \rightarrow$ neutrina o wyższych energiach (z reakcji pep, rozpadu ⁷Be i ⁸B) dają znaczący wkład do szybkości reakcji, mimo mniejszego strumienia niż neutrina "pp"

Wszystkie eksperymenty rejestrujące elektronowe neutrina słoneczne wykazały, że ich strumień jest mniejszy w porównaniu z przewidywaniami Standardowego Modelu Słońca

Deficyt neutrin słonecznych

Deficyt neutrin słonecznych

Pierwsza obserwacja w eksperymencie radiochemicznym Homestake (kopalnia złota w Południowej Dakocie / USA, zbieranie danych od 1968 przez ok. 30 lat)

Pomiar produkcji izotopu argonu w reakcji Davisa – Pontecorvo :

 ν_{e} + ³⁷Cl \rightarrow ³⁷Ar + e⁻

Raymond Davis – autor eksp. Homestake, odkrywca neutrin słonecznych Bruno Pontecorvo – m. in autor hipotezy o oscylacji neutrin

- zbiornik z 615 tonami (380000 I) związku chloru (dichloroetylen C₂Cl₄)
- energia progowa dla tej reakcji Ev = 0.814 MeV (teoretycznie eksp. czuły na v_e z ⁷Be, ale praktycznie rejestruje neutrina z rozpadu ⁸B)
- promieniotwórczy izotop argonu ³⁷Ar metodami chemicznymi jest wydzielany ze zbiornika, liczba atomów argonu szacowana ze stopnia promieniotwórczości próbki → wyznaczenie strumienia neutrin

(średni czas życia ³⁷Ar - 35 dni, częstość zachodzenia reakcji ~ 1 atom / 2 dni)

wielkie wyzwanie eksperymentalne – co dwa miesiące wydobycie ok. 30 atomów argonu spośród 2 · 10³⁰ atomów chloru w zbiorniku

Wyniki eksperymentu Homestake

Zmierzone strumienie neutrin słonecznych w jednostkach SNU

(Solar Neutrino Unit – jednostka tradycyjnie używana do opisu liczby reakcji wywoływanych przez neutrina słoneczne – odp. zachodzeniu 1 reakcji na sekundę na 10^{36} atomów, 1 SNU = 10^{-36} /s)

 $\nu_e \rightarrow \nu_\mu, \nu_\tau$??

eksp. Davisa jest czuły tylko na v_e

2002 – nagroda Nobla dla Raymonda Davisa, autora eksp. Homestake i jednego z pionierów astrofizyki neutrinowej Wyniki eksp. Homestake zostały potwierdzone przez kolejne eksp. neutrin słonecznych : eksp. radiochemiczne : GALLEX / GNO (Gran Sasso, Włochy), SAGE (Rosja) technika liczników Czerenkowa : Kamiokande i SuperKamiokande (Japonia) oraz SNO (Kanada)

Detektory radiochemiczne GALLEX / GNO i SAGE (dziesiątki ton galu) czułe tylko na v_e

 ν_e + $^{71}\text{Ga} \rightarrow ^{71}\text{Ge}$ + e⁻

Niska energia progowa dla tej reakcji E_v = 0.233 MeV → rejestracja neutrin z cyklu ppl o energii poniżej 0.420 MeV GALLEX po raz pierwszy zarejestrował te neutrina Wydajność detekcji ~ 1 dla produkcji

kilku atomów Ge / dzień

Obserwacja neutrin słonecznych przez elastyczne rozpraszanie v_e na elektronach

$$\nu_{e}$$
 + e^- \rightarrow ν_{e} + e^-

Rozproszone elektrony o odp. dużej energii emitują promieniowanie Czerenkowa wykrywane przez fotopowielacze Ve

- czułość na neutrina słoneczne o energii Ev > 5 MeV (neutrina borowe $~^8B \rightarrow {}^8B^*$ + e⁺ + v_e)
- dla niższych energii dominuje tło od promieniotwórczości naturalnej – rozpady β)
- metoda detekcji czuła na kierunek neutrin (elektrony sa produkowane głównie w kierunku neutrin)

Eksperyment SuperKamiokande

Detektor w starej kopalni pod górą Kamioka w Japonii

- Zbiornik o wysokości 40 m i średnicy 40 m wypełniony 50 000 tonami wody (H₂O)
- Otoczony ok. 11 000 fotopowielaczy
- 1 km pod ziemią

Eksperyment SuperKamiokande

Detektor w starej kopalni pod górą Kamioka w Japonii

- Zbiornik o wysokości 40 m i średnicy 40 m wypełniony 50 000 tonami wody (H₂O)
- Otoczony ok. 11 000 fotopowielaczy
- 1 km pod ziemią

Obserwacja neutrin słonecznych przez elastyczne rozpraszanie $\nu_{\rm e}\,$ na elektronach atomowych

 ν_{e} + e^- \rightarrow ν_{e} + e^-

Rozproszone elektrony o odp. dużej energii emitują promieniowanie Czerenkowa wykrywane przez fotopowielacze Ve

- czułość na neutrina słoneczne o energii Ev > 5 MeV (neutrina borowe $~^8B \rightarrow {}^8B^*$ + e⁺ + v_e)
- dla niższych energii dominuje tło od promieniotwórczości naturalnej – rozpady β)
- metoda detekcji czuła na kierunek neutrin (elektrony sa produkowane głównie w kierunku neutrin)

Eksperyment SuperKamiokande

$$\nu_e$$
 + e⁻ \rightarrow e⁻ + ν_e

Neutrina słoneczne rejestrowane w detektorze pochodzą głównie z reakcji charged current (CC)

Cosinus kąta m-dzy rozproszonym elektronem i kierunkiem Słońca

$$\nu$$
 + e⁻ \rightarrow ν + e⁻

Wkład od neutrin wszystkich zapachów, które oddziałały w procesie neutral current (NC) jest mniejszy; $\sigma_{NC} (v_e) \sim \sigma_{CC} (v_e) / 5$

$$\phi^{s\kappa} \approx \phi_{\nu e} + 0.154 \cdot (\phi_{\nu \mu} + \phi_{\nu \tau})$$

- eksp. SuperKamiokande zmierzył wyraźny
 sygnał neutrin pochodzących ze Słońca
- zmierzony strumień neutrin stanowi ok. 45% strumienia przewidywanego przez Standardowy Model Słońca

DANE / SSM = 0.465 ± 0.005

Deficyt neutrin słonecznych

Eksperyment SuperKamiokande

Rozkład energii elektronów zmierzony w procesie

 ν_e + e⁻ \rightarrow ν_e + e⁻

Neutrinogram Słońca z eksperymentu SuperKamiokande

Rzeczywisty rozmiar Słońca ~ 1/2 pixla

Niska przestrzenna zdolność rozdzielcza neutrinogramu wynikiem wielokrotnego rozpraszania kulombowskiego niskoenergetycznych elektronów z procesu v_e + e⁻ \rightarrow v_e + e⁻

Eksperyment SNO

(Sudbury Neutrino Observatory, Kanada, 1999 – 2006)

rozwiązanie zagadki neutrin słonecznych po ok. 35 latach : silny dowód na transformację wewnątrz Słońca neutrin $\nu_e \rightarrow \nu_\mu$ lub / i $\nu_e \rightarrow \nu_\tau$

- kulisty akrylowy zbiornik o średnicy 12 m wypełniony 1000 t D₂O – ciekły licznik Czerenkowa
- wewnętrzna (5300 t) i zewnętrzna (1700 t) osłona wodna
- promieniowanie Č mierzone przez ~ 9500 fotopowielaczy
- detektor w kopalni na głębokości ponad 2000 m

3 fazy eksperymentu : (3 różne techniki detekcji neutronów)

- tylko D₂O
- D₂O + 2 tony NaCl
- D₂O + liczniki proporcjonalne wypełnione ³He

3 metody obserwacji neutrin słonecznych :

- v_{X} + e⁻ $\rightarrow v_{X}$ + e⁻ rozpraszanie elastyczne
- $v_e^{}$ + d $\rightarrow p + p + e^{-}$ proces poprzez prądy naładowane (charged current, CC)
- $v_X + d \rightarrow p + n + v_X$ proces poprzez prądy neutralne (neutral current, NC)

3 techniki detekcji neutronów :

- $n + d \rightarrow t + \gamma + 6.25 \text{ MeV}$ faza I, tylko D_2O
- $n + {}^{35}CI \rightarrow {}^{36}CI + \gamma + 8.6 \text{ MeV}$ faza II, $D_2O + NaCI$

jądra sodu mają duży przekrój czynny na wychwyt neutronów \rightarrow dwukrotny wzrost wydajności na detekcję przypadków NC \rightarrow poprawa statystycznej separacji sygnałów NC i CC \rightarrow znaczący wzrost precyzji w pomiarze strumieni ν_e i ν_X

• $n + {}^{3}\text{He} \rightarrow p + t + 0.76 \text{ MeV}$ faza III, D2O + liczniki proporcjonalne wypełnione 3He

mniejsze korelacje m-dzy zmierzonymi strumieniami neutrin v_e i $v_{X,}$ zmniejszenie niepewności w pomiarze kąta mieszania neutrin

Budowa detektora SNO

Fotopowielacze

http://www.sno.phy.queensu.ca

Widok dolnej części powłoki akrylowej i fotopowielaczy

SNO – detekcja neutrin

- 1. <u>Elastyczne rozpraszanie</u> <u>neutrin na elektronach</u> (ES)
- Czułość na <u>wszystkie zapachy neutrin</u> (proces NC) – ale dominacja procesów z v_e *e* częstość (ES) ~ $\phi(v_e)$ + 0.154 ($\phi(v_{\mu}) + \phi(v_{\tau})$)
- Detekcja promieniowania Č rozproszonych elektronów

2. <u>Rozpraszanie na deuterze - CC</u>

- ν_e + d \rightarrow p + p + e⁻
- tylko v_e uczestniczą w tej reakcji
- detekcja promieniowania Č elektronów
- częstość reakcji (CC) ~ φ(ν_e)

 $v_x + e^- \rightarrow v_x + e^-$

3. <u>Rozpraszanie na deuterze - NC</u>

• wychwyt neutronów przez deuter :

 $n + d \rightarrow t + 6.25 \text{ MeV } \gamma$

- detekcja promieniowania Č elektronów rozproszonych przez γ z wychwytu n
- pomiar całkowitego strumienia neutrin dla E_v > 2.2 MeV (neutrina borowe)

częstość reakcji (NC) ~ $\phi(v_e) + \phi(v_u) + \phi(v_\tau)$

Przykładowy przypadek oddziaływania zarejestrowany przez fotodetektory eksperymentu SNO

Wyniki pomiarów SNO (faza I + II)

Rozkłady energii i kąta rozpraszania

elektronów \rightarrow rozdzielenie wkładów od procesów ES, CC i NC

Jednostki [10⁶ cm⁻² s⁻¹]

 $\phi_{cc} = 1.68 \pm 0.06 \pm 0.09 = \phi(v_e)$ $\phi_{NC} = 4.94 \pm 0.21 \pm 0.36 = \phi_{TOT}$ $= \phi(v_e) + \phi(v_\mu) + \phi(v_\tau)$ $\phi(v_e) / \phi_{TOT} \sim 1 / 3$ "znikanie" neutrin elektronowych

Zgodność z pomiarami fazy III <u>Standardowy Model Słońca</u> $\phi_{TOT} = 5.05 \pm 1.00$

Wyniki eksperymentu SNO i Super-Kamiokande. Na osi poziomej znajduje się wynik pomiaru strumienia neutrin elektronowych, na osi pionowej wynik pomiaru strumienia pozostałych dwu neutrin.

$$v_e + d \rightarrow p + p + e^- \qquad v_X + d \rightarrow p + n + v_X$$

SNO SK $v_e + e^- \rightarrow v_e + e^-$

• Zgodność zmierzonego <u>całkowitego</u> strumienia neutrin z przewidywaniami SSM

Silna ewidencja na transformację (~ 2/3) słonecznych neutrin elektronowych na ν_{μ} i ν_{τ} wewnątrz Słońca

Name	Location	Mass	Reaction	Start
Homestake	S.Dakota USA	615	³⁷ Cl(v _e ,e ⁻) ³⁷ Ar	1968 stopped
SAGE	Baksan, Russia	50	⁷¹ Ga (v _e ,e ⁻) ⁷¹ Ge	1990 stopped
Galex/GNO	Gran Sasso, Italy	30	⁷¹ Ga (v _e ,e ⁻) ⁷¹ Ge	1992 stopped
Kamiokande	Kamioka, Japan	2000	$\nu_{x}e^{\text{-}} \rightarrow \nu_{x}e^{\text{-}}$	1986 stopped
Super Kamiokande	Kamioka, Japan	50000	$\nu_x e^{\scriptscriptstyle -} \to \nu_x e^{\scriptscriptstyle -}$	1996
SNO	Sudbury, Canada	8000	$\nu_{\textbf{e}} d {\rightarrow} \textbf{ e}^{\text{-}} \textbf{ pp}$	1999 stopped
			$\nu_{x}d \rightarrow \nu_{x}$ np	2001 stopped
			$\nu_{x}e^{\scriptscriptstyle -} \to \nu_{x}e^{\scriptscriptstyle -}$	1999 stopped
Borexino	Gran Sasso, Italy	300	$\nu_{x}e^{\text{-}} \rightarrow \nu_{x}e^{\text{-}}$	2007
				soon
KamLand	Kamioka, Japan	1000	reactor antineutrinos	2001

Eksperymenty badające neutrina słoneczne

Borexino – detektor z ciekłym scyntylatorem, dotychczas wyniki dot. neutrin słonecznych z reakcji ⁷Be i ⁸B, planowane badania strumieni v z procesów ppl, pep i CNO

KamLand – detektor z ciekłym scyntylatorem dedykowany do badań antyneutrin reaktorowych, czuły także na neutrina słoneczne