

Urządzenia do rejestracji cząstek

- Co chcemy zmierzyć i jakie to narzuca warunki aparaturze pomiarowej.
- Geometria detektorów w eksperymentach ze stałą tarczą i w eksperymentach na zderzaczach (akceleratorach wiązek przeciwbieżnych).
- Cząstki mierzone bezpośrednio i pośrednio
- Procesy oddziaływania cząstek z materią wykorzystywane w detektorach cząstek

 Jak rozróżnić cząstki docierające do detektora po ich "zachowaniu" w aparaturze pomiarowej z wykorzystaniem przykładów stanów końcowych dla oddziaływań e+e- w oparciu o dane z eksperymentu DELPHI.

Śladowe detektory krzemowe i detektory
Czerenkowa – standardowe detektory
współczesnych eksperymentów

A.Zalewska

Co chcemy zmierzyć

Co tylko się da:

- Położenie cząstki (w detektorach śladowych),
- Pęd i ładunek cząstki (umieszczając detektory śladowe w polu magnetycznym),
- Energię cząstki (w kalorymetrach elektromagnetycznych i hadronowych),
- Prędkość (w detektorach Czerenkowa, w detektorach promieniowania przejścia, w oparciu o pomiar strat energii na jonizację)
- Masę, co oznacza identyfikację cząstki (np. w oparciu o łączny pomiar prędkości i pędu cząstki)
- Spin, parzystości i inne liczby kwantowe, na ogół w dedykowanych eksperymentach

Przypadek oddziaływania ciężkich jonów w eksp. NA49 oraz symulacja oddziaływania w eksp. ALICE ("plasterek" odpowiadający 1/8 aparatury pomiarowej

Kilka zasad obowiązujących przy budowie aparatury w eksperymentach fizyki cząstek

- Aparatura eksperymentalna składa się z wielu detektorów, spełniających różne funkcje, aby zmierzyć możliwie wszystkie rodzaje cząstek i w możliwie pełnym zakresie kinematycznym,
- Pokrycie kąta bryłowego zależy od tego, czy eksperyment bada zderzenia przeciwbieżnych wiązek czy zderzenia wiązka-tarcza.

Kolejność umieszczania detektorów począwszy od punktu oddziaływania pierwotnych cząstek: najbliżej umieszcza się detektory śladowe, aby zmierzyć położenia cząstek jak najmniej zaburzone procesami oddziaływania cząstek z materią detektora, a dopiero później kalorymetry, w których mierzy się energię cząstek, wykorzystując procesy oddziaływania prowadzące do destrukcji cząstek. Na ogól eksperymenty wyposażone są w komory śladowe umieszczone w obszarze kalorymetrów, które służą do pomiaru torów leptonów μ oraz w detektory służące do pomiaru prędkości cząstek

Typowa aparatura pomiarowa współczesnego eksperymentu

 Typowy jest tzw. detektor uniwersalny czyli układ wielu różnego typu detektorów, które łącznie mierzą "co tylko się da" dla tych cząstek, które do nich docierają.

• W przypadku aparatury w eksperymencie przy akceleratorze wiązek przeciwbieżnych oznacza to pokrycie detektorami możliwie pełnego kąta bryłowego brak jest detektorów jedynie w obszarze rury akceleratora — przykładem takiej aparatury jest aparatura eksperymentu DELPHI w CERN-ie, w którym badano oddz. e+e- przy energiach 90-209 GeV

 W przypadku eksperymentu typu wiązka-tarcza spektrometr również składa się z wielu detektorów, ale ze względu na ruch układu środka masy wyróżniony jest kierunek wiązki i detektorami pokrywa się stosunkowo mały obszar kąta bryłowego wokół tego wyróżnionego kierunku — przykładem takiej aparatury jest układ detektorów eksperymentu NA48 w CERN-ie, badającego rozpady mezonów K⁰

Aparatura eksperymentu DELPHI

Przykład aparatury pomiarowej dla eksperymentu przy zderzaczu - rura akceleratora otoczona jest detektorami "beczki", a ta z dwu stron zamknięta jest przez "korki"; wewnątrz nadprzewodzącej cewki umieszczone są detektory śladowe i do identyfikacji cząstek, a na zewnątrz - kalorymetry i detektory śladowe do pomiaru mionów

Detektor eksperymentu ATLAS

Aparatura eksperymentu ATLAS w podziemnej hali eksperymentalnej: wysokość detektora – 22 metry, długość – ponad 40 metrów

Aparatura eksperymentu NA48

Przykład aparatury pomiarowej dla eksperymentu z zewnętrzną wiązka, w tym przypadku wiązką mezonów K⁰ - różnego typu detektory umieszczone są wzdłuż kierunku lotu wiązki

A.Zalewska

Cząstki mierzone bezpośrednio i pośrednio

• Bezpośrednio mierzy się te cząstki, które żyją dostatecznie długo (powyżej 10⁻¹⁰ sek), aby dotrzeć do detektorów (pierwszy detektor znajduje się zwykle w odległości pojedynczych centymetrów od punktu pierwotnego oddziaływania), np. fotony, elektrony, leptony µ, mezony π i K, protony, neutrony, hiperony Lambda i Ksi (trzeba jednak pamiętać o tym, że rozkład czasów życia dla cząstek nietrwałych – μ , π , K, Λ , Ξ – jest wykładniczy)

 Cząstki o czasie życia między 10⁻¹² sek a 10⁻¹³ sek (leptony tau, cząstki zawierające ciężkie kwarki c i b) identyfikuje się, mierząc w detektorach cząstki pochodzące z ich rozpadów i rekonstruując punkt rozpadu w oparciu o te pomiary. Wymaga to detektorów o bardzo dobrej zdolności rozdzielczej dla pomiarów położenia i pędu cząstek (stąd "kariera" wspomnianych dalej detektorów krzemowych i dużych detektorów gazowych typu TPC),

• Dobry kalorymetr elektromagnetyczny pozwala czasem na identyfikację rozpadu mezonu π^0 na dwa fotony, czyli cząstki o czasie zycia ok. 10^{-16} sek,

 Metody identyfikacji cząstek rozpadających się na drodze oddziaływań silnych... wymagają oddzielnego A.Zalewska
⁹

Zasada działania detektorów cząstek

- W ostatecznym rachunku sprowadza się do wykorzystywania oddziaływań elektromagnetycznych cząstek z atomami materiału detektora, wystarczy więc dobrze poznać oddziaływania cząstek naładowanych i fotonów z materią,
- W przypadku detektorów służących do badania oddziaływań silnych czy słabych najpierw w takim oddziaływaniu powstają cząstki naładowane i fotony i te wtórne cząstki rejestrujemy w detektorach poprzez ich oddziaływania elektromagnetyczne,
- Najczęściej wykorzystywane w detektorach procesy elektromagnetycznych oddziaływań cząstek z materią:
 - Jonizacja i wzbudzenie atomów ośrodka,
 - Promieniowanie hamowania,
 - Proces produkcji par e+e-
 - Scyntylacje
 - Promieniowanie Czerenkowa
- Poza tym coraz częściej wykorzystuje się też promieniowanie przejścia.

Jonizacja ośrodka przez cząstkę naładowaną

Przechodząc przez ośrodek detektora, cząstka naładowana jonizuje jego atomy. Większość tych oderwanych elektronów znajduje się w odległości mniejszej niż 1 µm od toru cząstki, co oznacza, że teoretycznie możliwe jest osiągnięcie takiej dokładności pomiaru położenia cząstki. W rzeczywistości udało się otrzymać taką dokładność tylko dla małego detektora krzemowego oraz dla pomiarów w emulsjach jądrowych Zjawisko jonizacji wykorzystywane jest przede wszystkim w gazowych i półprzewodnikowych detektorach śladowych (służących do pomiaru położenia cząstek)

Śladowe detektory gazowe

 Powszechnie stosowane w eksperymentach fizyki cząstek, ich wynalazca (G.Charpak) uhonorowany został nagrodą Nobla z fizyki

 Na jonizację pojedynczego atomu gazu potrzeba średnio 30 eV

 Zasadnicze elementy budowy detektora gazowego: katoda (może być podzielona na segmenty) i anoda (najczęściej w postaci drutów), między którymi przyłożona jest różnica potencjałów. Elektrony jonizacji poruszają się w polu elektrycznym w kierunku anody

 W większości detektorów gazowych przyłożone napięcie jest tak duże, że w pobliżu anody pierwotny sygnał ulega zwielokrotnieniu (typowo 10000 razy) na skutek wielokrotnej jonizacji wtórnej spowodowanej przez fakt, że elektrony jonizacji zyskują od pola elektrycznego energię wystarczającą na zjonizowanie dalszych atomów.

 W śladowych detektorach gazowych typowa dokładność pojedynczego pomiaru położenia cząstki wynosi 50 - 100 µm

Śladowe detektory gazowe

•W zależności od typu detektora gazowego, położenie cząstki wyznacza się z pozycji drutów, do których dotarły "rozmnożone" elektrony jonizacji, z czasu dryfu elektronów do drutu lub wykorzystuje się obie te informacje łącznie (patrz komora TPC)

Zdolność rozdzielcza pomiaru położenia cząstki zależna od dokładności pomiaru czasu i prędkości dryfu oraz od dokładności pomiaru amplitudy sygnałów na drutach. Gdy położenie cząstki wyznaczane z pozycji drutu z sygnałem od cząstki, to zdolność rozdzielcza $\sigma = d/\sqrt{12}$

TPC- Komora Projekcji Czasowej

Rys. 14. Szkic budowy urządzenia TPC

Najbardziej nowoczesny rodzaj detektora gazowego -- dostarcza trójwymiarowej informacji o położeniu cząstek: dwie współrzędne wyznacza się z rozkładu sygnału od dryfujących elektronów na dwu-wymiarowych padach na obu końcach cylindra, a trzecią współrzędną z czasu dryfu elektronów do padów.

Straty energii na jonizację dla cząstek naładowanych

Wielkość strat energii na jonizację zależy od prędkości cząstki, więc pomiar tych strat i pędu cząstki pozwala w pewnym zakresie pędu na ich identyfikację. Najpierw ze wzrostem prędkości cząstki straty maleją, gdyż cząstka coraz krócej przebywa w polu pojedynczych atomów. Jednocześnie pole cząstki coraz głębiej wnika w ośrodek, co przeważa i prowadzi do wzrostu strat energii. W końcu powstałe swobodne elektrony izolują elektrycznie dalsze atomy od wpływu cząstki i nastepuje ustalenie wielkosci strat energii cząstki na jonizację. A.Zalewska 15

TPC- pomiar strat energii na jonizację dla cząstek naładowanych

Komory TPC wykorzystywane tez są do pomiaru strat energii na jonizację, a więc wspomagają identyfikację cząstek naładowanych, co ilustruje powyższy rysunek. Widoczne dobre wydzielenie poszczególnych krzywych wymaga ok. 200 pomiarów wartości strat energii wzdłuż toru cząstki

Komora TPC wypełniona ciekłym argonem

Nowatorska idea – zastosowanie do badań neutrin, nie stosuje się wzmocnienia sygnału w detektorze, gdyż gęstość ciekłego argonu wystarczająca, aby sygnał od pierwotnej jonizacji był wystarczająco duży (kilkaset elektronów na mm drogi cząstki)

Kalorymetr elekromagnetyczny

Służy do pomiaru energii elektronów (pozytonów) i fotonów

• Wykorzystuje się fakt, że w materiałach o dużym Z już przy energiach rzędu 10 MeV w oddziaływaniach elektronów z materią dominuje proces wypromieniowania fotonu, a w oddziaływaniach fotonów proces konwersji fotonu na parę e+e- (*patrz rozkłady na następnej stronie*)

 W wyniku tych oddziaływań powstaje kaskada elektronowo-fotonowa o elektronach i fotonach coraz niższych energii, którą trzeba zarejestrować w detektorze i "przetłumaczyć pomiar" (kalibracja kalorymetru) na energię cząstki

Buduje się kalorymetry elektromagnetyczne dwu rodzajów: jednorodne, w których proces oddziaływania i proces służący detekcji zachodzą w tym samym materiale, np. w kryształach Nal czy Csl i warstwowe, w których w pasywnej warstwie ciężkiego materiału (np. Pb) zachodzą oddziaływania, a w aktywnej warstwie detekcyjnej rejestruje się "skutki" rozwoju kaskady (np. elektrony jonizacji w detektorze gazowym)

Procesy oddziaływania elektronów i fotonów z materią

Procesy oddziaływania elektronów i fotonów z materią

Elektrony i pozytony w ołowiu - proces wypromieniowania fotonu (bremsstrahlung) dominuje już przy energii 10 MeV

W Pb czy Nal prawdopodobieństwo konwersji fotonu na parę e+e- jest rzędu 70-80% już przy energii 10 Mev

A.Zalewska

Pomiar w kalorymetrze elekromagnetycznym DELPHI

Kształt kaskady wytworzonej przez pojedynczy foton i dwa bliskie fotony, na które rozpadł sie mezon π° - ilustracja do możliwości zidentyfikowania tak bardzo krótkożyciowej cząstki jak mezon π°

A.Zalewska

Kalorymetr hadronowy

Służy do pomiaru energii hadronów

 Wykorzystuje się fakt, że w materiałach o dużym Z wysokie jest prawdopodobieństwo, że hadron oddziała silnie, tworząc inne hadrony, które znów z dużym prawdopodobieństwem oddziałają silnie

 W wyniku tych oddziaływań powstaje kaskada hadronowa. W miarę degradacji energii hadronów zaczynają dominować oddziaływania elektromagnetyczne detekcja rozwoju kaskady często bazuje na rejestracji sygnału od elektronów jonizacji

 Kalorymetr hadronowy ma na ogół strukturę warstwową: płyty ciężkiego materiału, w którym zachodzą oddziaływania poprzekładane sa wasrtwami detektorów, np. gazowych do rejestracji elektronów jonizacji

Kalorymetr hadronowy

Rozwój kaskady hadronowej

 Typowa dokładność pomiaru energii w kalorymetrze hadronowym jest rzędu 100%/sqrt(E)

• Czynniki będące źródłem tej niepewności: fluktuacje krotności cząstek produkowanych w zderzeniach hadronów, obecność neutrin unoszących część energii i nie oddziałujących w detektorze, składowa elektromagnetyczna związana z produkcją mezonów π^0 , wysoka energia progowa, energia wiązania w przypadku zderzeń z jądrami, ...

Procesy oddziaływania leptonów µ z materią

Miony w żelazie - ze względu na dużo większą masę niż masa elektronów procesy emisji fotonów czy produkcji par w oddziaływaniach elektromagnetycznych mionów zaczynają odgrywać rolę dopiero przy energiach rzędu GeV, więc miony praktycznie nie wytwarzają kaskad i dominującym procesem oddziaływania jest jonizacja atomów ośrodka

Identyfikacja cząstek na podstawie typowych zachowań

- Podsumowanie typowych "zachowań" cząstek w detektorze uniwersalnym bez uwzględnienia wyspecjalizowanych detektorów:
- wszystkie cząstki naładowane tworzą tory w detektorach śladowych
- naładowane i neutralne hadrony tworzą kaskady hadronowe w kalorymetrze hadronowym
- elektrony, pozytony i fotony tworzą kaskady elektromagnetyczne w kalorymetrze elektromagnetycz-nym
- miony tworzą tory w detektorach śladowych, nie tworzą kaskad w kalorymetrach
- neutrina oddziałują wyłącznie słabo i zarejestrowanie ich oddziaływań wymaga dedykowanych eksperymentów przy użyciu detektorów o bardzo dużej masie
- Następne strony pokazują kilka przypadków oddziaływań e+e- zarejestrowanych w detektorze DELPHI, które posłużą zilustrowaniu powyższego podsumowania

Elektrony w detektorze DELPHI

Przykład produkcji bozonu Z⁰ rozpadajacego się następnie na parę e+e- -- elektron i pozyton tworzą tory w detektorach śladowych otaczających rurę akceleratora i kaskady w kalorymetrze elektromagnetycznym

A.Zalewska

Leptony µ w detektorze DELPHI

Przykład produkcji bozonu Z0 rozpadającego się następnie na parę µ+µ- -- miony tworzą tory w detektorach śladowych otaczających rurę akceleratora, nie tworzą kaskad w kalorymetrach, dają sygnały w detektorach śladowych (nazywanych komorami mionowymi) umieszczonych wewnątrz i na zewnątrz kałorymetru hadronowego 27

Hadrony w detektorze DELPHI

Przykład produkcji bozonu Z0 rozpadającego się następnie na parę kwark-antykwark, które hadronizują w dwa strumienie cząstek -- cząstki końcowe to głównie hadrony, które tworzą tory w detektorach śladowych (jeśli są naładowane) i kaskady w kalorymetrze hadronowym (również te neutralne, np.neutrony)

Śladowe detektory krzemowe

"Przebój" ostatniego dwudziestolecia, gdyż tylko one pozwalają mierzyć położenie cząstek z dokładnością lepszą niż 10 µm dla dużego układu detekcyjnego złożonego z setek krzemowych płytek (typowa powierzchnia płytki to ok. 20 cm²), a taka dokładność jest konieczna w badaniach krótkożyciowych cząstek zawierających ciężkie kwarki b i c, których czasy życia są rzędu 10⁻¹²—10⁻¹³sek

 Zasady działania: najczęściej diody krzemowe spolaryzowane zaporowo – ma miejsce detekcja ładunku jonizacji ("dziury" i elektrony) wytworzonego przez cząstkę przechodzącą przez zubożony obszar wysoko-oporowego krzemu, poza tym detektory CCD, a ostatnio detektory z celami CMOS

•Zastosowanie planarnej technologii pozwala na produkcję diod niemal dowolnych kształtów i w odległościach praktycznie tylko limitowanych rozmiarami elektroniki (również krzemowej, o wielkiej skali integracji i odpornej radiacyjnie)

 Detektory krzemowe umieszcza się na ogół jak najbliżej punktu pierwotnego oddziaływania i wtedy mówi się o krzemowych detektorach wierzchołka

Diody spolaryzowane zaporowo - zasada działania

Detektory paskowe:

 diody w kształcie pasków, dokładny pomiar jednej współrzędnej czyli prostopadle do pasków, stosowane od początku lat 80-tych

Wybór krzemu spośród innych półprzewodników podyktowany jest jego znakomitymi własnościami z punktu widzenia potrzeb detektorowych:

 -- średnia energia potrzebna na zjonizowanie jednego atomu wynosi 3.6 eV, co oznacza duży sygnał z cienkiego detektora (typowo 25000 par elektron-dziura dla 300 µm krzemu)

 ponieważ sygnał nie wymaga wzmocnienia w samym detektorze, a cele pomiarowe są bardzo małe, stąd świetna dokładność w pomiarze położenia cząstek

 -- czas zbierania ładunku wygenerowanego przez cząstkę jest krótszy niż 20 nsek, są to więc bardzo szybkie detektory

 pomiar strat energii cząstek na jonizację dla detektorów krzemowych umieszczonych w polu magnetycznym wspomaga też identyfikację cząstek

-- łatwa jest obróbka mechaniczna i chemiczna krzemu, a SiO₂ jest znakomitym izolatorem

Krzemowy detektor eksperymentu DELPHI

Był to największy z krzemowych detektorów śladowych zainstalowanych w eksperymencie przed rokiem 2002. Na ok. 2m² aktywnego krzemu składało się ok. 900 płytek detekcyjnych, które w sumie zawierały ok. 1.5 miliona podstawowych cel detekcyjnych (diody w k<u>sztakc</u>je pasków i kwadrat<u>ó</u>w)

Krzemowy detektor eksperymentu DELPHI

Fotografia przedstawia krzemowy detektor wierzchołka DELPHI przed zamontowaniem w eksperymencie w 1997 roku

Konstrukcja krzemowego detektora eksperymentu ATLAS

Krzemowy detektor eksperymentu ATLAS ma powierzchnię ok. 80 m² aktywnego krzemu

A.Zalewska

Konstrukcja krzemowego detektora eksperymentu CMS

Krzemowy detektor eksperymentu CMS ma powierzchnię ponad 200 m² aktywnego krzemu

Promieniowanie Czerenkowa

Identyfikacja cząstek – najlepsze są metody z wykorzystaniem pomiaru prędkości cząstek poprzez: pomiar strat energii na jonizację, czasu przelotu, promieniowania Czerenkowa, promieniowania przejścia

Promieniowanie Czerenkowa polega na emisji fotonów wzdłuż drogi cząstki, która w danym ośrodku porusza się prędzej niż światło w tym ośrodku – detektory Czerenkowa są teraz powszechnie wykorzystywane w eksperymentach akceleratorowych i w badaniach oddziaływań neutrin.

Promieniowanie Czerenkowa

Sygnał Czerenkowa jest bardzo mały – straty energii na to promieniowanie są typowo rzędu 1% strat energii na jonizację

Liczba wyemitowanych fotonów na jednostkę długości drogi cząstki zależy od ich długości fali

Przykłady materiałów wykorzystywanych w detektorach Czerenkowa

medium	n	$\theta_{max}(\beta=1)$	$N_{ph} (eV^{-1} cm^{-1})$
air	1.000283	1.36	0.208
isobutane	1.00127	2.89	0.941
water	1.33	41.2	160.8
quartz	1.46	46.7	196.4

Typy detektorów Czerenkowa

Progowe detektory Czerenkowa

Stosowane w eksperymentach wiązka – tarcza (małe ograniczenia miejsca) już w latach 60-tych, mierzony całkowity sygnał fotonowy, 2-3 detektory z różnymi progami pozwalały na rozróżnianie π , K, p

Różniczkowe detektory Czerenkowa

Rejestracja stożka promieniowania Czerenkowa dla cząstek o różnej masie, ale ze współosiowej wiązki – na wiązkach cząstek wtórnych służą do analizy składu wiązki

Detektory typu RICH (Ring Imaging Cerenkov)

Pełne obrazowanie stożka promieniowania Czerenkowa, rozwój detektorów fotonów i niskoszumowej elektroniki pozwolił na ich zastosowanie w eksperymentach przy zderzaczach

Detektor SuperKamiokande Wodny detektor Czerenkowa

e/μ

Pierwsza obserwacja oscylacji neutrin w 1998 roku

Detektor SuperKamiokande

Zdjęcia sprzed wypadku w 2001 roku

Zasada działania detektora SuperK

Zbiornik z bardzo czystą wodą, - jeśli naładowane cząstki powstałe w oddziaływaniach neutrin poruszają się w wodzie szybciej niż światło, to wzdłuż ich torów emitowane jest promieniowanie Czerenkowa (niebieskawe światło z widzialnej części widma).

Światło, w postaci pierścienia, rejestruje się przy pomocy fotopowielaczy

 rozkład i czas powstania sygnału służą do wyznaczenia kierunku naładowanej cząstki (-> kierunku neutrina),

 wielkość sygnału, kąt rozwarcia stożka oraz identyfikacja cząstki naładowanej pozwalają wyznaczyć jej energię (-> energię i rodzaj neutrina)

SuperK - rejestracja e i µ.

$v_e N \rightarrow e N'$

 $\nu_{\mu} N \rightarrow \mu N'$

Detektor ICECUBE - objętość 1 km³

Poszukiwanie kosmicznych źródeł neutrin skrajnie wysokich energii

Detektor ICECUBE budowany jest w lodzie w pobliżu bieguna południowego, od kilku lat zbiera już dane mniejszy detektor AMANDA

A.Zal

Wstępne wyniki z AMANDY

Podwodne teleskopy neutrinowe

Trzy różne programy R&D realizowane w Morzu Śródziemnym – program ANTARES w pobliżu Tulonu, na głębokości 2400 m, udane testy fragmentu detektora → cel: detektor o objętości ~1km³

