Fizyka neutrin – wykład 9

Agnieszka Zalewska 7.05.2008

- Oscylacje dla trzech zapachów neutrin
- Pomiar kata θ_{13} w eksperymentach reaktorowych
- "Efekt LSND" problem neutrin sterylnych
- Lista pytań dla przyszłych pomiarów oscylacyjnych
- Idea pomiarów poza osią wiązki akceleratorowej projekty T2K i NOvA z użyciem superwiązek
- + Eksperymenty akceleratorowe trzeciej generacji fabryki neutrin, wiązki $\boldsymbol{\beta}$

Co wiemy? Neutrina atmosferyczne (akceleratorowe) i słoneczne (reaktorowe) oscylują

Solidna ewidencja doświadczalna:

Neutrina atmosferyczne/akceleratorowe: oscylacje $v_{\mu} \ll v_{\tau}$ $\Delta m_{23}^2 \cong 10^{-3} eV^2$, $\theta_{23} \cong 45^0$ |∆m32| (eV²/c⁴) ∞ 55 2.0 1.5 0.2 0.4 0.6 0.8 1.0 $sin^2(2\theta_{23})$ $|\Delta m_{32}^2| = 2.74^{+0.44}_{-0.26} (stat + syst) \times 10^{-3} eV^2$ $\sin^2 2\theta_{23} = 1.00_{-0.13}$ (stat + syst) Constrained to $\sin^2(2\theta_{23}) \le 1$

Neutrina stoneczne/reaktorowe: oscylacje $v_e < -> v_u, v_\tau$ $\Delta m_{12}^2 \cong 10^{-4} eV^2$, $\dot{\theta}_{12} \cong 30^0$ ×2 KamLAND 95% C.L. 99% C.L. 99.73% CL $m^2_{21}(eV^2)$ 95% C.L 90% C I 10⁻¹ 10 20 30 40 $\Delta m_{21}^2 = 7.59^{\frac{\tan^2\theta_{12}}{-0.21}} \times 10^{-5} \,\mathrm{eV}^2$ $\tan^2 \theta_{12} = 0.47^{+0.06}_{-0.05}$

W obu przypadkach dobry opis w ramach formalizmu oscylacji dwu stanów zapachowych

Dwie skake cher, rôžnies kwadratów mas →trzy stany zapachowe neutrin

Formalizm oscylacji dla trzech stanów zapachowych – macierz PNMS

wiąże sektor atmosferyczny i słoneczny

Kąt θ_{23} jest być może maksymalny (czy na pewno?), kąt θ_{12} duży, a kąt θ_{13} jest mały (jak mały?)

Jeśli $\delta \neq 0, \pi, 2\pi$...to słabe oddziaływania łamią symetrię CP w sektorze leptonowym (jak w przypadku kwarków).To, czy uda się zmierzyć łamanie CP dla neutrin, zależy od wartości kąta θ_{13} 3

Pomiar kąta θ_{13}

Lepszy pomiar kąta θ_{13} to obecnie najważniejsze zadanie w badaniach oscylacji neutrin!

Macierze mieszania kwarków i leptonów

Bardzo różna postać obu macierzy - wartości wszystkich elementów pozadiagonalnych w macierzy mieszania kwarków są bardzo małe, a dla macierzy mieszania neutrin - duże (z wyjątkiem elementu U_{e3})

$$V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \qquad V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.01 \\ 0.2 & 1 & 0.01 \\ 0.01 & 1 \end{pmatrix}$$

$$||(V_{MNS})_{cS}| \le 0.2|$$

Czy to przejaw jakiejś nieznanej jeszcze symetrii przyrody?

Masy neutrin - czego uczą oscylacje?

Dwa ważne pytania:

Gdzie jest zero na tej skali masy? Czy hierarchia jest normalna (jak wyżej) czy odwrócona względem Δm_{atm}^2

Komplikacja czyli "efekt LSND" - trzecia wartość różnicy kwadratów masy; czwarte neutrino?

"Efekt LSND"

11.2.410 HOILA, 1.00.2000

L/E, (meters/MeV)

sygnał: pozyton w koincydencji z opóźnionym sygnałem od fotonu z wychwytu neutronu

eksperyment KARMEN nie zaobserwował takich oscylacji, ale nie pokrywał pełnego obszaru parametrów oscylacji dla LSND

A.Zalewska, 7.05.2008

Nater plug (more shielding)

Eksperyment MiniBooNE sprawdzenie efektu LSND

Eksperyment prowadzony w FermiLAB-ie
 8 GeV-owe protony z boostera

→ wiązka neutrin o energii ~500 MeV (~30 MeV w LSND)

→ detektor w odległości ~500 m od tarczy (~30 m w LSND)

→ L/E takie samo w obu eksperymentach, ale zupełnie inne błędy systematyczne i sygnał

→ dla ~102aleps@at7.06y200@rczająca czułość, aby wykluczyć lub potwierdzić efekt LSND

Wiązka protonów, tarcza, wiązka neutrin

 $\begin{array}{l} 4 \times 10^{12} \ \text{protonów/impuls} \\ \text{czas impulsu 1.6 } \mu\text{s} \\ \text{częstotliwość do 5 Hz} \\ \text{Tarcza berylowa o grubości 1.7 } \lambda \\ \text{Modelowanie produkcji } \pi \ \text{w oparciu o} \\ \text{dane z eksperymentu HARP} \\ \text{Zebrane dane: } 6.3 \times 10^{20} \ \text{pot} \\ \text{Analiza W oparciu o } 5.58 \pm 0.12 \times 10^{20} \ \text{pot} \end{array}$

Detektor MiniBooNE

9

MiniBooNE – przykłady rejestrowanych przypadków

Przewidywane udziały poszczególnych reakcji

System wyzwalania eksperymentu

Podstawowy tryger bazuje na impulsie wiązki

- okno czasowe trygera wynosi 19.2 μ s,
- otwiera się na 4 μ s przed początkiem impulsu o długości 1.6 μ s Definiuje się tak zwane "podprzypadki" czyli oddzielne impulsy w ramach 100 ns przedziałów, na jakie dzieli się okno

Dwie niezależne, "ślepe" analizy danych

→ "Ślepa" analiza – niedostępne przypadki sygnału (rzędu 1% wszystkich przypadków), pozostałe są cały czas analizowane pod kątem zrozumienia tła, kalibracji detektora, poprawiania symulacji Monte Carlo, "pudełko sygnałowe" otwiera się, kiedy jest wystarczająca liczba przypadków i analiza jest dopracowana

→ Cele obu analiz: maksymalna redukcja tła i maksymalizacja wydajności poszukiwania sygnału

→ "Obszar sygnału E^{QE} między 300 MeV a 1500 MeV

→ Patrzy się na całkowity nadmiar przypadków oddziaływań v_e i na zależność energetyZelzmata, 7.05.2008

MiniBooNE signal examples: $\Delta m^2=0.4 \text{ eV}^2$ $\Delta m^2=0.7 \text{ eV}^2$ $\Delta m^2=1.0 \text{ eV}^2$

Wyniki analizy 1

→ Sprawdzenie wartości χ^2 porównania danych z MC dla 12 zmiennych kontrolnych, problem z energią neutrina E_{χ}^{QE} , więc podniesienie dolnej granicy energii do wartości 475 MeV

→ Dla E^{QE} powyżej 475 MeV liczba przypadków i rozkład energii zgodne z brakiem oscylacji

Wyniki analizy 1

Zależność energetyczna i ograniczenie dla oscylacji v_{μ} -> v_e

A.Zalewska, 7.05.2008

Wyniki analizy 1 – pełny zakres energii

Best Fit (dashed): $(\sin^2 2\theta, \Delta m^2) = (1.0, 0.03 \text{ eV}^2)$ χ^2 Probability: 18%

Nadmiar przypadków nie daje się wytłumaczyć oscylacjami

Porównanie czułości obu analiz w wykluczeniu oscylacji $\nu_{\mu}\!\!-\!\!\!>\!\!\nu_{e}$

Eksperyment MiniBooNE wykluczył trzeci obszar $\Delta m^2 \rightarrow$ neutrina sterylne nie istnieja A.Zalewska, 7.05.2008

Przyszłość fizyki neutrin – lista zadań

Z dokładniejszych pomiarów oscylacji:

• Lepsze wyznaczenie wartości katów mieszania i różnic kwadratów mas dla oscylacji atmosferycznych i słonecznych

- Jaka jest wartość kąta θ_{13} ?
- Jaki jest znak ∆m₂₃²? Normalna czy odwrócona hierarchia mas?
- Czy symetria CP dla neutrin jest łamana?

Xeksperymencie LSND) - NIE

Z pomiarów nieoscylacyjnych:

- Jakie są wartości mas neutrin?
- Czy neutrina są cząstkami Diraca czy Majorany?

• Czy neutrina są źródłem istotnych informacji astrofizycznych i kosmologicznych?

Przyszłe pomiary reaktorowe kąta θ_{13}

$$1 - P_{\overline{e}\overline{e}} \cong \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

 Bardzo czysty pomiar θ₁₃ (bez niejednoznaczności i wpływu efektów masowych), ale limitowany dokładnością pomiaru strumienia

V.Sinev on July 29

statistical error $2.8\% \Rightarrow 0.5\%$ systematic error $2.7\% \Rightarrow \sim 0.6\%$

Daya Bay Layout of the experiment

Y.Wang on July 29

Far: 80 ton 1600m to LA, 1900m to DYB Overburden: 350m Muon rate: 0.04Hz/m²

0% slope

0% slope

8% slope

0% slope

Mid: Baseline: ~1000m Overburden: 208m LA: 40 ton Baseline: 500m Overburden: 112m Muon rate: 0.73Hz/m²

Waste transport portal

LingAo cores

DYB: 40 ton Baseline: 360m Overburden: 98m Muon rate: 1.2Hz/m² Near-Far detector schemes: To cancel reactor-related errors Residual error $\sim 0.1\%$ Swap near-far detectors To cancel detector-related errors. Residual error $\sim 0.2\%$ **Detector deep undergrounds** To reduce backgrounds B/S at near site: $\sim 0.5\%$ B/S at far site: $\sim 0.2\%$ Fast Measurement DYB+Mid, 2008-2009 Sensitivity (1 year) ~ 0.03 **Full Measurement** DYB+LA+Far, from 2010 Sensitivity (3 year) < 0.01 total sys.error 0.06~0.36%

K.Inoue

Baseline, depth are optimized.

Daya Bay cores

Kąt mieszania θ_{13} – pomiar dla neutrin akceleratorowych

Niezerowy θ_{13} zależy od innych parametrów oscylacji (→korelacje); dla jednych parametrów jest to zależność kwadratowa, a dla innych trygonometryczna (→degeneracje) – wobec tego potrzebne są pomiary zarówno dla neutrin jak i dla antyneutrin, jak też dla różnych baz pomiarowych. A.Zalewska, 7.05.2008

Pomiar kąta θ_{13} dla neutrin akceleratorowych

Pomiar polega na poszukiwaniu oscylacji ν_{μ} <--> ν_{e} w obszarze L/E, gdzie dominują oscylacje ν_{μ} <--> ν_{τ}

A.Zalewska, 7.05.2008

Program badań oscylacji v akceleratorowych – 1

Badania neutrin przechodzą z fazy odkryć w fazę precyzyjnych pomiarów – najwięcej informacji z badań neutrin akceleratorowych

Pierwsza generacja eksperymentów (rozpoczęte lub bliskie realizacji) - lata 2005-2011:

- Eksperyment MINOS na wiązce NuMi
- Eksperymenty OPERA i ICARUS na wiazce CNGS

Druga generacja eksperymentów (w trakcie budowy (T2K) lub zatwierdzania i finalnych dyskusji (NOvA) – lata 2009-2020:

- Eksperyment T2K w Japonii na super-wiązce z Tokai do Kamioki
- Eksperyment NOvA na wiązce (potem super-wiązce) NuMi

Trzecia generacja eksperymentów (w realizacji tylko programy R&D) - od ok. 2020:

 Eksperymenty na superwiązkach (moc wiązki protonów ~4MW), wiązkach z fabryki neutrin lub tzw. wiązkach β
 A.Zalewska, 7.05.2008

Program badań oscylacji v akceleratorowych – 2

Liczba oddziaływań neutrin z oscylacji zarejestrowanych w eksperymencie zależy od wydajności źródła neutrin, długości bazy pomiarowej i wielkości detektora. Bardzo ważna jest też redukcja tła.

Przyszłe wydajne źródła neutrin:

• Superwiązki - intensywne wiązki neutrin z rozpadów mezonów π wytwarzane w oparciu o protonowe akceleratory dużej mocy (rzędu MW)

 \bullet Fabryki neutrin - wiązki neutrin z rozpadów leptonów μ , wytworzone w oparciu o miony przyspieszone do energii typowo kilkudziesięciu GeV

+ Wiązki β – wiązki neutrin z jądrowych rozpadów β przyspieszanych radio-izotopów

Rozważa się budowę znacznie większych detektorów, np. 1Mtonowy wodny detektor Czerenkowa

Ważny też będzie dobór baz pomiarowych

Neutrina akceleratorowe – aspekty techniczne

- 1. Akceleratory: wiązki konwencjonalne (znana technika, ale tło od v_e), wiązki beta (neutrina lub antyneutrina bez tła, ale technika na etapie R&D), fabryki neutrin (jednocześnie anty- v_{μ} i v_e bez tła, ale technika na etapie R&D i konieczny jest magnetyczny detektor)
- 2. Detektory: najlepiej opanowana technika to wodne detektory Czerenkowa, najlepszym detektorem dla badań nisko-energetycznych neutrin jest detektor scyntylacyjny, najlepszy dla badań v_{τ} jest detektor emulsyjny, najuniwersalniejszy jest detektor ciekło-argonowy

Oczekiwana dokładność pomiarów kąta θ_{13}

□ Most of plausible range for Ue3 explored in 10 yr from now

Idea pomiarów poza osią wiązki ("off-axis")

Kinematyka rozpadów 2-ciałowych

Eksperyment T2K (Tokai to Kamioka)

Pierwsza superwiązka

Neutrina dla T2K

T2K - etap 2

Program NuMi "off-axis" – eksperyment NOvA

Etap I (lata 2007(?) - 2014)

- Detektor o masie 30 kton i wydajności ε~40% na powierzchni ziemi
- 4x10²⁰ p.o.t./rok
- 1.5 roku z wiązką neutrin (6000 v_{μ} CC, 70-80% 'oscyluje')
- 5 lat z wiązką antyneutrin (7000 v_{μ} CC, 70-80% 'oscyluje')

Etap II (lata 2014-2020) ???

- Detektor o masie 200 kton i wydajności ε~40% lub 100 kton ciekłego argonu
- 20x10²⁰ protonów na rok
- 1.5 roku neutrin (120000 v_{μ} CC, 70-80% 'oscyluje')
- 5 lat antyneutrin (130000 v_{μ} CC, 70-80% 'oscyluje')

Eksperyment NOvA

 Detektor będzie prawie na powierzchni, w odległości ponad 900 km od Fermilabu, w odległości 12 km od osi wiązki

A.Zalewska, 7.05.2008

Całkowita masa - 30 kton, 80% stanowić będzie ciekły scyntylator czyli aktywna część detektora (5% dla detektora MINOS), indywidualne cele są o szerokości 3.9 cm, głębokości 6 cm i długości 15.7 m

• Detektor został zoptymalizowany na identyfikację oddziaływań $v_e \rightarrow e$ podłużna granulacja 0.15% X₀ (1.5% dla MINOS)

Faza 3 - CERN-owska koncepcja fabryki neutrin

Faza 3 – CERN-owska koncepcja wiązek β

 Przyspieszanie jąder ⁶He (źródło antyneutrin) i ¹⁸Ne (źródło neutrin), R&D w ramach programu EURISOL DS. (FP6)

• Synergia z programem rozbudowy CERN-owskich akceleratorów, potrzebny ogromny detektor o niskiej gęstości i krótka baza pomiarowa \rightarrow MEMPHYS, wady: małe, źle zmierzone i źle rozumiane przekroje czynne, badania oscylacji bez czułości na znak Δm_{23}^2

Jeśli kat θ_{13} będzie nie za mały, to...

$$A_{CP} = \frac{P(\nu_{\mu} \leftrightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \leftrightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e})}$$

Pomiar asymetrii CP wymaga wyznaczenia prawdopodobieństwa oscylacji dla neutrin i dla antyneutrin, a więc potrzebujemy silnych wiązek obu rodzajów, fabryki neutrin są bardzo dobrymi kandydatami dla pomiarów CP

Obliczenia pokazują, że dla fabryk neutrin pomiary dla L<700km nie są czułe na fazę CP, optymalne odległości detektorów to 3000-7000 km A.Zalewska, 7.05.2008

Pomiary CP w oparciu o fabryki neutrin

Neutrino Factory at RAL

$\mu^- \rightarrow e^- \nu_{\mu} \overline{\nu}_e$				
Disappearance	Appearance			
$\overline{\nu}_e \rightarrow \overline{\nu}_e \rightarrow e^+$	$\overline{\nu}_e \rightarrow \overline{\nu}_\mu \rightarrow \mu^+$			
	$\overline{\nu}_e \rightarrow \overline{\nu}_T \rightarrow t^+$			
$\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$	$v_{\mu} \rightarrow v_{e} \rightarrow e^{-}$			
	$v_{\mu} \rightarrow v_{\tau} \rightarrow t^{-}$			

Fabryka neutrin może dostarczyć dostatecznej świetlności, aby pomiar w odległości 3000-7000 km był możliwy

4000

Baseline (km)

6000

2000

|∆m²₂₂| = 0.0035 eV ²

 $|\Delta m_{2_{21}}^2| = 5 \times 10^{-5} \text{ eV}^2$

 $\Delta m_{22}^2 < 0$

 $\Delta m_{a_2}^2 > 0$

8000

 $\sin^2 2\theta_{12} = 0.004$

100-

10

0.1

0.01

4(Ve -> Vμ) / N(ve -> vμ)

Można szukać albo mionów o "złym znaku" na skutek przejścia v_e->v_µ, zaniku leptonów "dobrego" znaku lub pojawienia się leptonu τ

Można wyznaczyć znak Δm^2_{23} dzięki występowaniu efektów masowych przy tak dużych odległościach L

A.Zalewska, 7.05.2008

Faza 3 – europejskie koncepcje detektorów

Wodny detektor MEMPHYS

Koncepcja: pierwotnie rozwijana dla laboratorium Frejus, pierwowzór stanowi detektor SuperKamiokande

Zalety: najtańszy materiał tarczy, dobrze opanowana technologia, możliwa ekstrapolacja do masy rzędu 1 Mtony

Wyzwania: lepsze i tańsze fotopowielacze, dodawanie GdCl₃

Scyntylacyjny detektor LENA

Koncepcja: pierwotnie rozwijana dla laboratorium Pyhäsalmi (Finlandia), pierwowzór – detektory Borexino i KamLAND

Zalety: niski próg energetyczny, dobra energetyczna zdolność rozdzielcza, znana technologia

Wyzwania: lepszy i tańszy odczyt światła (fotopowielacze, koncentratory światła

Konstrukcja: cylinder o średnicy 30 m i długości 100 m, masie detektora ok. 50 kton, odczyt przez 12 000 fotopowielaczy (20" – 30% pokrycia powierzchni, z koncentratorami światła – 50% pokrycia)

Ciekło-argonowy detektor GLACIER

Koncepcja: pierwotnie rozwijana dla Sieroszowic i Gran Sasso, pierwowzór – detektor ICARUS

Zalety: bardzo dobra przestrzenna i energetyczna zdolność rozdzielcza → obrazowanie topologii, identyfikacja cząstek

Wyzwania: 20-metrowy dryf elektronów, wielka instalacja kriogeniczna, termiczna izolacja zbiornika

Konstrukcja: cylinder o średnicy 70 m i wysokości 100 m, masa detektora ok. 100 kton, odczyt elektronów jonizacji oraz światła (scyntylacje - 1000 8" PMT, promieniowanie Czerenkowa -27000 8" PMT) A.Zalewska, 7.05.2008

Gdzie umieścić taki wielki detektor?

Lokalizacje rozpatrywane w ramach europejskiego projektu LAGUNA A.Zalewska, 7.05.2008

Sieroszowice mine (Poland) - big salt cavern

Volume (100x15x20) m³ Depth ~950 m from a surface Salt layer ~70 m thick Temperature ~35°C

Very good radioactive background conditions

A.Rubbia, Fermilab, 16-17.09.2006

Copper - 6th position in the world's exploitation ranking Silver - 2nd position But also Salt A. Zalewska

Stabilność komory – podstawowa sprawa

Wstępne symulacje geomechaniczne: W.Pytel (Wrocław), J.Ślizowski, K.Urbańczyk (Kraków)

Zaciskanie się komory: 1.5 m po 30 latach - by 1.5 m, 0.145 m zaraz po wykonaniu komory

A.Zalewska, 7.05.2008

Effort coefficient distribution (after 30 years) Rozkład współczynników wytężenia (po 30 latach) model 2/700

Map 54 Criterion 4

Serdecznie zapraszam do prac w projekcie LAGUNA!

B.1.3.3. Work package list / overview

Work package no.	Work package title	Type of activity	Lead beneficiary no.	Person- months	Start month	End month
WP1	Management, coordination and assessment	MGT	ETHZ	26.5	1	24
WP2	Underground Infrastructures and Engineering	RTD	TUM	157.5	1	24
WP3	Safety, environmental and socio-economic issues	RTD	U-Sheffield	46	1	24
WP4	Science Impact and Outreach	RTD	IFJ PAN	49.9	1	24
	TOTAL			279.9		