

Plan

- Motywacja fizyczna
- Program badań
- Akcelerator LHC
- Detektor LHCb
 - → Opis wybranych systemów

Łamanie symetrii CP

Parzystość CP

- jednoczesne wykonanie operacji sprzężenia ładunkowego C i inwersji przestrzennej P, tzn. operacji q $\rightarrow -q$ oraz $\vec{r} \rightarrow -\vec{r}$. CP przeprowadza cząstkę w jej antycząstkę o przeciwnym pędzie i skrętności
- niezachowanie parzystości P (1956) oraz parzystości C (1957) w oddziaływaniach słabych
- Łamanie parzystości kombinowanej CP
 - łamanie symetrii CP w rozpadach długożyciowych mezonów K⁰ (1964)
- Asymetria materia-antymateria
 - wszystkie obserwacje wskazują, że obecny wszechświat składa sie głównie z materia
 - hipoteza Sacharowa (1967)
 - jednym z 3 warunków powstania asymetrii materia-antymateria jest łamanie CP

Badanie łamania CP od 40 lat (zjawiska subtelne) LHCb: duże próbki danych, rozszerzenie obszaru badań

Łamanie CP w Modelu Standardowym (MS)

Macierz Cabibbo-Kobayashi-Maskawy (CKM)

 macierz CKM opisuje przejścia pomiędzy trzema rodzinami kwarków poprzez wymianę bozonów pośredniczących

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \hat{V}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$= \hat{V}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$= \hat{V}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$= \hat{V}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$= \hat{V}_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- w MS elementy macierzy CKM są parametrami \rightarrow trzeba je wyznaczyć doświadczalnie
- 3 rodziny kwarków \rightarrow nieredukowalna faza \rightarrow łamanie CP
- Trójkąty unitarności
 - unitarność macierzy CKM ⇔ trójkąty unitarności
 - interpretacja geometryczna np. kol(1) * kol(3):

$$V_{ud} \cdot V_{ub}^* + V_{cd} \cdot V_{cb}^* + V_{td} \cdot V_{tb}^* = 0$$

Wybrane zagadnienia programu badawczego LHCb

Precyzyjny pomiar parametrów mieszania $B^0{}_s\text{-}\,\underline{B}^0{}_s\text{:}$ Δm , $\Delta\Gamma_s$

Precyzyjny pomiar kąta γ (z uwzględnieniem procesów z diagramami drzewiastymi oraz diagramami pingwinowymi → przyczynki od "nowej fizyki" - odstępstwa od MS)

Pomiary kątów mieszania w różnych kanałach w celu ograniczenia błędów na parametry macierzy CKM

Rzadkie rozpady mezonów B^0 oraz B_s ze stosunkami rozgałęzień rzędu 10⁻⁸

Poszukiwanie efektów nowej fizyki w rzadkich ekskluzywnych i inkluzywnych rozpadach B

Fizyka mezonów D

Fizyka mezonów B_c, barionów z kwarkiem b, ...

 $B_s \rightarrow D_s \pi, \dots$ $B_s \rightarrow J/\psi \phi, B_s \rightarrow J/\psi \eta^{(')}$

 $B^0 \rightarrow \phi K_s, B_s \rightarrow \phi \phi, \dots$ $B^0 \rightarrow \rho \pi, B^0 \rightarrow \rho \rho, \dots$

 $B^0 \rightarrow K^* \mu^+ \mu^-, B_s \rightarrow \mu^+ \mu^-, \dots$

 $B^0 \rightarrow K^* \gamma, B^0 \rightarrow K^{*0} I^+ I^-,$ $b \rightarrow s l^+ l^-, B_s \rightarrow \mu^+ \mu^- \dots$ C/P, mieszanie D-D

Przewidywania LHCb

Oscylacje mezonów B_s

W Modelu Standardowym oscylacje B_s wynikają z diagramów typu:

 $\Delta m_s = m_H - m_I$, $\Delta \Gamma = \Gamma_H - \Gamma_I$, $X_s = \Delta m_s \cdot T$

Nowa fizyka w LHCb

Wgląd w fizykę poza Modelem Standardowym

Dwa różne pomiary tych samych parametrów macierzy CKM (np. pomiar kąta y)

Badanie rzadkich rozpadów mezonów pięknych

• niezgodności obserwowanych częstości rozpadów z przewidywaniami MS (np. $B^0 \rightarrow K^{*0} | I^+ | I^-$)

Akcelerator LHC

LHC (Large Hadron Collider)

- zlokalizowany w dawnym tunelu LEP-u (LHCb w miejscu eksperymentu DELPHI)
- przyspiesza dwie przeciwbieżne wiązki protonów; zderzenia przy √s = 14 TeV
- przekrój czynny σ_{bb} = 500 µb
- przekrój czynny σ_{hadr} = 80 mb
- przecięcie wiązek co 25 ns (40MHz)
- nominalna świetlność: 10³⁴ cm⁻² s⁻¹
- punkt pracy LHCb: 2 · 10³² cm⁻² s⁻¹
 - → wybieramy przypadki z pojedynczym oddziaływaniem p-p w zderzeniu wiązek

Skorelowana produkcja par b<u>b</u>

- produkcja cząstek pięknych zachodzi pod małymi kątami względem osi wiązki
- para mezonów B<u>B</u> razem do przodu lub do tyłu \rightarrow geometria LHCb

Geneva airport

ATLA.

CERN

Mont Blanc

Akcelerator

• Akcelerator gotowy pod koniec 2007

Identyfikacja cząstek w szerokim zakresie pędów (2 - 100 GeV/c)

- redukcja tła gdy separacja kinematyczna niewystarczająca

Szybki i efektywny układ wyzwalania

- selekcja interesujących przypadków z dużego tła

Szybki system akwizycji danych

Współpraca LHCb

- Detektor eksperymentu LHCb jest budowany przez zespół ponad 600 osób z 14 krajów i około 50 laboratoriów
- Udział Polski: IFJ PAN, AGH, IPJ (ponad 30 osób)

Sensory VELO Geometria VELO zoptymalizowana aby zapewnić rekonstrukcję on-line

- sensory 2 płaszczyzny w formie półkoli
- technologia n+ n
- promień 42 mm

total 2048 strips

- 2048 pasków / sensor
- 220 tys. kanałów odczytu
- Producent: Micron Semiconductor (UK)

78.3 um pitch

39.3 um pitch

1365 outer strips

96.6 um pitc

34 mm

910 mm

VELO - produkcja modułów

• Ukończenie produkcji, testów i instalacji modułów: koniec 2007

VELO Setup

 Silicon sensors, 7mm close to the LHC beams, are placed in a secondary vacuum for minimizing material
The two detector halves are retracted during injection

LHCC Comprehensive Review, 27th January Thomas Ruf CERN

Detektory śladowe (TT, IT, OT)

Detektor zewnętrzny OT - udział grupy krakowskiej

- Konstrukcja detektora zewnętrznego OT
- opracowanie ultralekkiej technologii konstrukcji paneli (rohacel + kompozyt na bazie tkaniny węglowej)
- badania technologiczne, budowa prototypu, technologia produkcji masowej
- produkcja 1000 m² paneli
- projekt mechanicznej konstrukcji nośnej
- udział w projektowaniu elektroniki odczytu
- oprogramowanie detektorowe

Produkcja modułów w IFJ

Detektor zewnętrzny OT

- Ukończono instalację struktury nośnej oraz paneli
- Rozpoczęto instalację modułów detektora (produkcja ukończona w 2006)

OT - produkcja modułów

• Ukończono produkcję modułów, zainstalowano ok. 1/4

Komora dryfowa Złącza elektronik Moduł O1 Testy

Detektory Czerenkowa

- identyfikacja cząstek (π , K, p) w zakresie pędów 2 100 GeV/c
- dwa detektory Czerenkowa RICH1 i RICH2 prędkości cząstek bliskie prędkości granicznej w ośrodku → promienie Czerenkowa zbliżają się do wartości granicznej → identifikacja niemożliwa

RICH - eliminacja tła

• Wyniki symulacji rozpadów B pokazujące konieczność identyfikacji mezonów π i K

RICH1

- Ukończony prototyp luster z włókien węglowych (produkcja wkrótce)
- Zainstalowana osłona magnetyczna

Lustro sferyczne

RICH2

<u> LHCb</u> ГН<mark>С</mark>р

- Przetransportowany pod ziemię pod koniec 2005
- Dokładność wykonania luster sferycznych: 50 µm

Transport

Kalorymetry

ECAL

HCAL

Stan obecny detektora LHCb

• Rozpoczęcie zbierania danych: listopad 2007

Układ wyzwalania (tryger)

- częstotliwość zderzeń = 40 MHZ → odczyt: 25 ns
- częstość zderzeń z co najmniej 1 oddziaływaniem p-p = 12 MHz \rightarrow z tego przypadki z B: 100 KHz
- częstość produkcji przypadków z B bardzo duża \rightarrow selekcja \rightarrow układ wyzwalania

Stopnie trygera: L0, HLT

• duży przekrój czynny na zderzenia nieelasyczne proton-proton \rightarrow redukcja tła od kwarków lekkich \rightarrow redukcja "tła" od produkcji bb

• pomiar łamania CP wymaga redukcji danych o 6 rzędów wielkości

Computing at CERN today

- High-throughput computing based on reliable "commodity" technology
- More than 1500 dual processor PCs
- More than 3 Petabyte of data on disk (10%) and tapes (90%)

Nowhere near enough!

Computing at CERN today

Tape silos and servers

CYFRONET's RC

- All 120 CPUs split into 4 clusters
 - LCG/EGEE 32 CPUs (Xeon 2.4-2.6)
 - EGEE pre-production 10 CPUs (Xeon 2.4-2.6)
 - CrossGrid 24 CPUs (PIII, Xeon 2.4)
 - EGEE IA64 40 Itanium 1.3 CPU
- SCSI Disk Array
 - 2.1 TB for LCG/EGEE
 - 1.2 TB for CrossGrid
- 1 Gb uplink to GEANT network

Podsumowanie

- LHCb jest detektorem dedykowanym precyzyjnemu badaniu zjawisk łamania symetrii CP
- Montaż detektora w końcowej fazie

Uruchomienie planowane na listopad 2007

 Istotny wkład grupy krakowskiej zarówno w budowę detektora, jak i rozwój oprogramowania służącego do rekonstrukcji oraz analizy danych

LHCb i fabryki B

Eksperyment	LHCb	Fabryki B
rodzaj zderzeń	proton-proton	elektron-pozyton
energia zderzenia	14 TeV	10 GeV
przekrój czynny σ _{bb}	500 µb	1 nb
przekrój czynny σ _{hadr.}	80 mb	5 nb
sygnał / tło	1:160	1:5
liczba bb / rok	10 ¹²	107
dostępne cząstki piekne	B _u B _d B _s B _c , bariony piękne	B _u B _d

LHCb

- duży przekrój czynny na produkcję bb, ale znaczne tło od zderzeń nieelastycznych
- zderzenia hadronowe, dostępne mezony piękne o wyższych masach i wszystkie bariony piękne
- bezpośrednia rejestracja pierwotnych i wtórnych wierzchołków rozpadu B

Fabryki B

- duża czystość danych, zderzenia e⁺e⁻ w rezonansie Y(4S), niewielkie tło od kontinuum
- zderzenia elektron-pozyton, dostępne tylko mezony B_u i B_d
- krótka droga lotu mezonów B do momentu rozpadu

różne warunki eksperymentalne
→ niezależne pomiary

$$A_{mix} = \frac{N_{bez_mieszania}(t) - N_{mieszanie}(t)}{N_{bez_mieszania}(t) + N_{mieszanie}(t)} = \frac{\cos(\Delta m_{S}t)}{\cosh((\Delta \Gamma_{S}/t)/2)}$$