High Energy Neutrino Detectors

Deborah Harris Fermilab Nufact'04 Summer Institute July 21, 2004

Outline of this Lecture

- Introduction
 - What are the goals?
 - Particle Interactions in Matter
- Detectors
 - Fully Active
 - Liquid Argon Time Projection
 - Cerenkov (covered in previous talk)
 - Sampling Detectors
 - Overview: Absorber and Readout
 - Steel/Lead Emulsion
 - Scintillator/Absorber
 - Steel-Scintillator

For Each Detector

- Underlying principle
- Example from real life
- What do v events look like?
 - Quasi-elastic Charged Current
 - Inelastic Charged Current
 - Neutral Currents
- Backgrounds
- Neutrino Energy Reconstruction
- What else do we want to know?

All detector questions are far from answered!

Detector Goals

 $P = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

- Identify flavor of neutrino
 - Need charged current events!
 - Lepton Identification (e,μ,τ)
- Measure neutrino energy
 - Quasielastics
 - Lepton energy ~ v energy $\nu p \rightarrow l^+ n$
 - Corrections due to
 - P,n motion in nucleus
- $vn \rightarrow l^- p$
- U,d motion in nucleon
- Everything Else
 - Need to measure energy of lepton and of X!

 $\nu N \rightarrow l X$

Making a Neutrino Beam

Goals vs v Beams

- Conventional Beams $(v_{\mu}, \%v_{e})$
 - Identify muon in final state
 - Identify electron in final state, subtract backgrounds
 - Energy regime: 0.4GeV to 17GeV
- β beams (all v_e)
 - Idenify muon or electron in final state
 - Energy regime: <1GeV for now</p>
- Neutrino Factories $(v_{\mu}, \overline{v}_{e})$
 - Identify lepton in final state
 - Measure Charge of that lepton!
 - Charge of outgoing lepton determines flavor of initial lepton
 - Energy regime: 5 to 50GeV v's

Next Step in this field: appearance!

- $\square \Theta_{13}$ determines
 - If we'll ever determine the mass hierarchy
 - The size of cp violation
- How do backgrounds enter?
 - Conventional beams:
 - Already some v_e in the beam
 - Detector-related backgrounds:

- Neutrino Factories:
 - No beam-related backgrounds
 - Detector-related backgrounds:

Why do detector efficiencies and background rejection levels matter?

Assume you have a convenional neutrino beamline which produces:

- •1000 v_{μ} CC events per kton (500NC events) •5 v_{e} CC events per kton
 - Which detector does better

(assume 1% ν_{μ} - ν_{e} oscillation probability)

-5 kton of

- 50% efficient for v_e
- 0.25% acceptance for NC

Background: $(5^{*}.5 v_e + 500^{*}.0025NC)x5=19$ Signal: $(1000^{*}.01^{*}.5)x5=25$, S/sqrt(B+S)=3.8

- 15kton of
 - 30% efficient for v_e
 - 0.5% acceptance for NC events?

Background: $(5^*.3 v_e + 500^*.005NC)x15=60$ Signal: $(1000^*.01^*.3)x15=45$, S/sqrt(B+S)=4.4

Particles passing through material

Particle	Characteristic Length	Dependence
Electrons	Radiation length (X _o)	Log(E)
Hadrons	Interaction length (λ_{INT})	Log(E)
Muons	dE/dx	Е
Taus	Decays first	γct=γ87µm

Material	X _o	$\lambda_{INT}(cm)$	dE/dx	ρ
	(cm)		(MeV	(g/cm^3)
			/cm))
L.Argon	14	83.5	2.1	1.4
Water	1	83.6	2.0	1
Steel	1.76	17	11.4	7.87
Scintillator	42	~80	1.9	1
Lead	0.56	17	12.7	11.4

Liquid Argon TPC (ICARUS)

- Electronic Bubble chamber
- Planes of wires (3mm pitch) widely separated (1.5m) 55K readout channels!
- Very Pure Liquid Argon
- Density: 1.4, Xo=14cm λ_{INT} =83cm
- 3.6x3.9x19.1m³ 600 ton module (480fid)

21 July 2004

Half Module of ICARUS

Liquid Argon TPC

 Because electrons can drift a long time (>1m!) in very pure liquid argon, this can be used to create an "electronic bubble chamber"

21 July 2004

Deborah Harris High Energy Neutrino Detectors

Raw Data to Reconstructed Even

Principle of Liquid Argon TPC

Readout planes: Q

21 July 2004

dE/dx in Materials

- Bethe-Block Equation
- x in units of g/cm²
- Energy Loss Only f(β)
- Can be used for Particle ID in range of momentum

Bethe-Block in practice

• From a single event, see dE/dx versus momentum (range)

21 July 2004

Examples of Liquid Argon Events

• Lots of information for every event...

Primary τ tag:
τ→e decay
Exclusive τ tag:
τ→ρ decay
Primary Bkgd: Beam v_e

CNGS v_{τ} interaction, $E_{\nu}=19$ GeV

π^0 identification in Liquid Argon

21 July 2004

Deborah Harris High Energy Neutrino Detectors

Oustanding Issues

Liquid Argon Time Projection Chamber

- Do Simulations agree with data (known incoming particles)
- Can a magnetic field be applied
- Both could be answered in CERN test beam program
- Is neutral current rejection that good?
- How large can one module be made?

• What is largest possible wire plane spacing?

Water Cerenkov at High (>1GeV) Energies

equation (even) has been stored at \$2000

Courtesy Mark Messier: one is v_e signal, one is π^0 background

21 July 2004

$\sigma(E_{\nu})$ of Water Cerenkov vs E_{ν}

Reconstructed Energy vs True Energy for ve CC Events

Reconstructed Energy vs True Energy for v CC Events

Reconstructed Energy vs True Energy for NC Events

$\epsilon(E_{recon})$ for Water Cerenkov

1-Ring, e-Like Reconstruction Efficiency vs Reconstructed Energy for ve CC Events

• Again, courtesy Mark Messier, for FeHo Study

21 July 2004

Oustanding Issues

Cerenkov Detectors What is largest vessel that can be made? (48mx58mx250m?)

- What is highest energy regime that is possible, with better electronics, photo-detectors, etc?
- Water Cerenkov clearly the cheapest per kton

From Fully Active to Sampling

Sampling calorimeters

Material	X _o (cm)	l _{INT} (cm)	l _{INT} (cm) Sampling (X _o	
L.Argon	14	83.5	.2 (ICARUS)	20
Water	1	83.6	.33 (NuMI OA)	36
Steel	1.76	17	1.4 (MINOS)	14
Scintillator	42	~80	.33 (NOvA)	40
Lead	0.56	17	.2 (OPERA)	6

- High Z materials:
 - mean smaller showers,
 - more compact detector
 - Finer transverse segmentation needed
- Low Z materials:
 - more mass/ X_0 (more mass per instrumented plane)
 - Coarser transverse segmentation
 - "big" events (harsh fiducial cuts for containment)

21 July 2004 Deborah Harris High Energy Neutrino Detectors

v_{τ} detection (OPERA)

• Challenge: making a Fine-grained and massive detector to see kink when tau decays to something plus V_{τ}

21 July 2004

v_{τ} detection (OPERA)

"Long" decays kink angle θ _{kink} > 20 mrad						
$\tau \to \ e$	Progr. Rep.	1999				
$\tau \to \mu$	Progr. Rep.	1999				
$\tau \rightarrow h (n\pi^0)$	Proposal	2000				
+ ρ search		<u>2001</u>				

impact parameter I.P. > 5 to 20 µm

Proposal

"Short" decays

 $\tau \rightarrow e$

 $\tau \rightarrow \mu$

• Detection Efficiency

	DIS long	QE long	DIS short	Overall*
$\tau \rightarrow e$	2.7	2.3	1.3	3.4
$\tau \rightarrow \mu$	2.4	2.5	0.7	2.8
$\tau \rightarrow h$	2.8	3.5	-	2.9
Total	8.0	8.3	1.3	9.1 (8.7)
* weighted	sum of DIS and Q	QE events		1
			Efficiency give	n in the Proposal

2000

2001

21 July 2004

v_{τ} backgrounds

Main background

- · charmed particle decay vertex mistaken as primary vertex
- μ from ν_{μ} CC faking $\tau \rightarrow \mu$ because of its large IP

v_{τ} events expected (OPERA)

Decay mode	Signal 1.2*10–3	Signal 2.4*10-3	Signal 5.4*10-3	Bkgnd.
$\tau \rightarrow e \ long$	0.8	3.1	15.4	0.15
$\tau \rightarrow \mu \ long$	0.7	2.9	14.5	0.29
$\tau \rightarrow h$ long	0.9	3.4	16.8	0.24
$\tau \rightarrow e \ short$	0.2	0.9	4.5	0.03
$\tau \rightarrow \mu \ short$	0.1	0.5	2.3	0.04
Total	2.7	10.8	53.5	0.75

• Comparison: $4 v_{\tau}$ events over 0.34 background at DONUT .27kton

21 July 2004

Outstanding Issues

Emulsion Sampling

- If LSND signature is oscillations, v_{τ} appearance will be much more important in the future: but need to understand if/how magnetic field can be made?
- Any way to make this detector more massive?

Scintillator + Wood

- Alternating horizontal and vertical scintillator planes
- Passive material: particle Board (density .6 - .7 g/cm^3)
- Sampling: 1/3 rad. length

9.4 tons

15 m 15 m

885 planes = detector

All Scintillator Detector

- Similar PVC extrusions
 - thicker cells along the beam
 - 4.5 cm vs. 2.56 cm (more light)
 - Longer extrusions
 - 17.5 m long vs. 48 ft (less light)
 - 32 cells wide vs.30 cells
- All Liquid Scintillator
 - <u>85% scintillator</u>,
 15% PVC
 - ~Same price implies a detector with ½ the mass

— 17.5 m →

APD readout on TWO edges

Detector is wider & taller, but shorter along the beam

No crack down the center

Least light areas are at the left And bottom edges

Scintillator Events (2GeV)

Energy Resolution

For v_e CC events with a found electron track (about 85%), the energy resolution is 10% / sqrt(E)

Measured – true energy divided by square root of true energy

• This helps reduce the NC and v_{μ} CC backgrounds since they do not have the same narrow energy distribution of the oscillated v_e 's (for the case of an Off Axis beam)

All Scintillator μ / e separation

Average **pulse height** per plane

Average **<u>number of hits</u>** per plane

• This is what it means to have a "fuzzy" track

– Extra hits, extra pulse height

• Clearly v_{μ} CC are separable from v_{e} CC

Outstanding Issues

Fine Grained Scintillator/Something Sampling

- How cheaply can this be made?
- Do you need any passive absorber?
- What is best choice for readout?
- Must have confidence in ability to reduce Neutral Current Backgrounds

Steel/Scintillator Detector (MINOS)

- 8m octagon steel & scintillator calorimeter
 - Sampling every 2.54 cm
 - 4cm wide strips of scintillator
 - 5.4 kton total mass
- 486 planes of scintillator
 - 95,000 strips

21 July 2004

(simulated) Events at MINOS

Steel Scintillator Response

Response measured in CERN test beam using a MINI-MINOS (1mx1m)

Provides calibration information Test of MC simulation of low energy hadronic interactions

*****Question: why might EM response be higher than hadronic response?

21 July 2004

Backgrounds in v Factories

21 July 2004

Detector-Dependence

• The denser the detector, the more likely the meson in the hadronic shower will interact before decaying...

Outstanding Issues

Steel/Scintillator

- For Neutrino factory Application: what transverse and longitudinal segmentation is needed?
- Any way to make this detector cheaper?

Conclusions

Detector Scorecard

Detector	Largest Mass to	Event by Event Identification				Ideal Neutrino
Technology	Date (kton)	v _e	ν_{μ}	v_{τ}	+/-?	Energy Range
LAR TPC	0.6	~	~		Not yet	huge
Water Cerenkov	50	~	~			<2GeV
Emulsion/Pb/Fe	0.27	\checkmark	\checkmark	\checkmark		>.5GeV
Scintillator++	1 or less	\checkmark	\checkmark			huge
Steel/Scint.	5.4		\checkmark		\checkmark	>.5GeV

There are huge detector demands on the next generation of detectors

- 1. Size*signal efficiency
- 2. Background rejection (NC)
- 3. "Ability to do other physics"

Water Cerenkov the most popular choice for next generation experiments, but we must keep working on ways to do better at high neutrino energies!